Главная страница

Управление вводом и выводом данных в операционных системах. Свабодная работа. Ургенчский филлиал Ташкентского ИнформационноТехнологического университета


Скачать 37.58 Kb.
НазваниеУргенчский филлиал Ташкентского ИнформационноТехнологического университета
АнкорУправление вводом и выводом данных в операционных системах
Дата18.12.2022
Размер37.58 Kb.
Формат файлаdocx
Имя файлаСвабодная работа.docx
ТипДокументы
#850935

Ургенчский филлиал Ташкентского Информационно-Технологического университета

 

Группа 962-20

 Студент: Саилхонов Жамшидбек

 

 

 

 

«Управление вводом и выводом данных в операционных системах»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Физические принципы организации ввода-вывода

Одной из главных функций ОС является управление всеми устройствами ввода-вывода компьютера. ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать ошибки; она также должна обеспечивать интерфейс между устройствами и остальной частью системы. В целях развития интерфейс должен быть одинаковым для всех типов устройств (независимость от устройств).

Назначением системы ввода-вывода является обеспечение обмена информацией между внешними (периферийными) устройствами и оперативной памятью. К внешним устройствам относятся:

-внешняя память (гибкие и жесткие магнитные диски, оптические и магнитооптические диски, магнитные ленты, флэш-память и т.д.),

-устройства ввода (клавиатура, мышь, сканер и т.д.),

-устройства вывода (принтер, монитор, графопостроитель и т.д.),

-устройства коммуникации, обеспечивающие связь с другими ЭВМ или управляемыми объектами, включая удаленные объекты.

Устройства ввода - это устройства ввода данных в систему оперативной памяти из системы устройств внешней памяти или устройств связи с внешними объектами.

К устройствам ввода относятся:

- клавиатура (ввод символьной информации),

- мышь (выбор координаты на экране монитора для ввода символьной или графической информации),

- сканер (ввод цифровой и графической информации с бумажного носителя и т.д.),

- устройства связи с внешними объектами.

Устройства вывода - это устройства вывода данных из системы оперативной памяти в систему внешней памяти или устройств связи с внешними объектами.

Процессор может осуществлять программное управление операциями ввода/вывода, но не являться объектом ввода или вывода.

Устройства коммуникации - это устройства, обеспечивающие связь с другими ЭВМ или управляемыми объектами, включая удаленные объекты.

 

Существует много разнообразных устройств, которые могут взаимодействовать с процессором и памятью: таймер, жесткие диски, клавиатура, дисплеи, мышь, модемы и т. д., вплоть до устройств отображения и ввода информации в авиационно-космических тренажерах. Часть этих устройств может быть встроена внутрь корпуса компьютера, часть - вынесена за его пределы, и общаться с компьютером через различные линии связи: кабельные, оптоволоконные, радиорелейные, спутниковые и т.д. Конкретный набор устройств и способы их подключения определяются целями функционирования вычислительной системы, желаниями и финансовыми возможностями пользователя. Несмотря на все многообразие устройств, управление их работой и обмен информацией с ними строятся на относительно небольшом количестве принципов. Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство - диск. Байт-ориентированные устройства не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются терминалы, строчные принтеры, сетевые адаптеры.

 

Структура системы ввода-вывода

Если поручить неподготовленному пользователю сконструировать систему ввода-вывода, способную работать со всем множеством внешних устройств, то, скорее всего, он окажется в ситуации, в которой находились биологи и зоологи до появления трудов Линнея. Все устройства разные, отличаются по выполняемым функциям и своим характеристикам, и кажется, что принципиально невозможно создать систему, которая без больших постоянных переделок позволяла бы охватывать все многообразие видов. Вот перечень лишь нескольких направлений (далеко не полный), по которым различаются устройства:

- Скорость обмена информацией может варьироваться в диапазоне от нескольких байт в секунду (клавиатура) до нескольких гигабайт в секунду (сетевые карты).

- Некоторые устройства могут быть использованы параллельно несколькими процессами (являются разделяемыми), в то время как другие требуют монопольного захвата процессом.

- Устройства могут запоминать выведенную информацию для ее последующего ввода или не обладать этой функцией. Устройства, запоминающие информацию, в свою очередь, могут дифференцироваться по формам доступа к сохраненной информации: обеспечивать к ней последовательный доступ в жестко заданном порядке или уметь находить и передавать только необходимую порцию данных.

Часть устройств умеет передавать данные только по одному байту последовательно (символьные устройства), а часть устройств умеет передавать блок байт как единое целое (блочные устройства).

- Существуют устройства, предназначенные только для ввода информации, устройства, предназначенные только для вывода информации, и устройства, которые могут совершать и ввод, и вывод.

В области технического обеспечения удалось выделить несколько основных принципов взаимодействия внешних устройств с вычислительной системой, т. е. создать единый интерфейс для их подключения, возложив все специфические действия на контроллеры самих устройств. Тем самым конструкторы вычислительных систем переложили головную боль, связанную с подключением внешней аппаратуры, на разработчиков самой аппаратуры, заставляя их придерживаться определенного стандарта.

Похожий подход оказался продуктивным и в области программного подключения устройств ввода-вывода. Мы можем разделить устройства на относительно небольшое число типов, отличающихся по набору операций, которые могут быть ими выполнены, считая все остальные различия несущественными. Мы можем затем специфицировать интерфейсы между ядром операционной системы, осуществляющим некоторую общую политику ввода-вывода, и программными частями, непосредственно управляющими устройствами, для каждого из таких типов. Более того, разработчики операционных систем получают возможность освободиться от написания и тестирования этих специфических программных частей, получивших название драйверов, передав эту деятельность производителям самих внешних устройств. Фактически мы приходим к использованию принципа уровневого или слоеного построения системы управления вводом-выводом для операционной системы.

Два нижних уровня этой слоеной системы составляет hardware: сами устройства, непосредственно выполняющие операции, и их контроллеры, служащие для организации совместной работы устройств и остальной вычислительной системы. Следующий уровень составляют драйвера устройств ввода-вывода, скрывающие от разработчиков операционных систем особенности функционирования конкретных приборов и обеспечивающие четко определенный интерфейс между hardware и вышележащим уровнем – уровнем базовой подсистемы ввода-вывода, которая, в свою очередь, предоставляет механизм взаимодействия между драйверами и программной частью вычислительной системы в целом.

 

Систематизация внешних устройств и интерфейс между базовой подсистемой ввода-вывода и драйверами.

Система типов устройств является далеко не полной и не строго выдержанной. Устройства обычно принято разделять по преобладающему типу интерфейса на следующие типы:

- символьные (клавиатура, модем, терминал и т.п.);

- блочные (магнитные и оптические диски и ленты, и т.д.);

- сетевые (сетевые карты);

- все остальные (таймеры, графические дисплеи, телевизионные устройства, видеокамеры и т.п.);

Такое деление является весьма условным. В некоторых операционных системах сетевые устройства могут не выделяться в отдельную группу, в некоторых – отдельные группы составляют звуковые устройства и видеоустройства и т.д. Некоторые группы в свою очередь могут разбиваться на подгруппы: подгруппа жестких дисков, подгруппа мышек, подгруппа принтеров. Устройства могут быть разделены на группы по выполняемым ими функциям для понимания функций драйверов и интерфейса между ними и базовой подсистемой ввода-вывода.

Рассмотрим только две группы устройств: символьные и блочные. Как уже упоминалось в предыдущем разделе, символьные устройства – это устройства, которые умеют передавать данные только последовательно байт за байтом, а блочные устройства – это устройства, которые могут передавать блок байт как единое целое.

К символьным устройствам обычно относятся устройства ввода информации, которые спонтанно, т.е. во времена непредсказуемые вычислительной системой, генерируют входные данные: клавиатура, мышь, модем, джойстик. К ним же относятся и устройства вывода информации, для которых характерно представление данных в виде линейного потока: принтеры, звуковые карты и т.д. По своей природе символьные устройства обычно умеют совершать две общих операции: ввести символ (байт) и вывести символ (байт) – get и put.

Для блочных устройств, таких как магнитные и оптические диски, ленты и т.п., естественными являются операции чтения и записи блока информации – read и write, а также, для устройств прямого доступа, операция поиска требуемого блока информации – seek.

Драйвера символьных и блочных устройств должны предоставлять базовой подсистеме ввода-вывода функции для осуществления описанных общих операций. Помимо общих операций некоторые устройства могут выполнять операции специфические, свойственные только им – например, звуковые карты умеют увеличивать или уменьшать среднюю громкость звучания, дисплеи умеют изменять свою разрешающую способность. Для выполнения таких специфических действий в интерфейс между драйвером и базовой подсистемой ввода-вывода обычно входит еще одна функция, позволяющая непосредственно передать драйверу устройства произвольную команду с произвольными параметрами, что позволяет задействовать любую возможность драйвера без изменения интерфейса. В операционной системе UNIX такая функция получила название ioctl (от input-output control).

Помимо функций read, write, seek (для блочных устройств), get, put (для символьных устройств) и ioctl в состав интерфейса обычно включают еще следующие функции:

- Функцию инициализации или повторной инициализации работы драйвера и устройства – open.

- Функцию временного завершения работы с устройством (может, например, вызывать отключение устройства) – close.

- Функцию опроса состояния устройства (если по каким-либо причинам работа с устройством производится методом опроса его состояния – например, в операционных системах Windows NT и Windows 9x так построена работа с принтерами через параллельный порт) – poll.

- Функцию останова драйвера, которая вызывается при останове операционной системы или выгрузке драйвера из памяти - halt.

 

Функции базовой подсистемы ввода-вывода

Базовая подсистема ввода-вывода служит посредником между процессами вычислительной системы и набором драйверов. Системные вызовы для выполнения операций ввода-вывода трансформируются ею в вызовы функций необходимого драйвера устройства. Однако обязанности базовой подсистемы не сводятся к выполнению только действий трансляции общего системного вызова в обращение к частной функции драйвера. Базовая подсистема предоставляет вычислительной системе такие услуги, как поддержка блокирующихся, не блокирующихся и асинхронных системных вызовов, буферизация и кэширование входных и выходных данных, осуществление spooling’а и монопольного захвата внешних устройств, обработку ошибок и прерываний, возникающих при операциях ввода-вывода, планирование последовательности запросов на выполнение этих операций.

 

Блокирующиеся, не блокирующиеся и асинхронные системные вызовы

Все системные вызовы, связанные с осуществлением операций ввода-вывода, можно разбить на три  группы по способам реализации взаимодействия процесса и устройства ввода-вывода.

К первой, наиболее привычной  для большинства программистов, группе относятся блокирующиеся  системные вызовы. Как следует  из самого названия, применение такого вызова приводит к блокировке инициировавшего  его процесса, т.е. процесс переводится  операционной системой из состояния исполнение в состояние ожидание. Завершив выполнение всех операций ввода-вывода, предписанных системным вызовом, операционная система переводит процесс из состояния ожидание в состояние готовность. После того, как процесс будет снова выбран для исполнения, в нем произойдет окончательный возврат из системного вызова. Типичным случаем для применения такого системного вызова является случай, когда процессу требуется получить от устройства строго определенное количество данных, без которых он не может выполнять работу далее.

Ко второй группе относятся  не блокирующиеся системные вызовы. Их название не совсем точно отражает суть дела. В простейшем случае, процесс, применивший не блокирующийся вызов, не переводится в состояние ожидание вообще. Системный вызов возвращается немедленно, выполнив предписанные ему операции ввода-вывода полностью, частично или не выполнив совсем, в зависимости от текущей ситуации (состояния устройства, наличия данных и т.д.). В более сложных ситуациях процесс может блокироваться, но условием его разблокирования является завершение всех необходимых операций или окончание некоторого промежутка времени. Типичным случаем применения не блокирующегося системного вызова может являться периодическая проверка на поступление информации с клавиатуры при выполнении трудоемких расчетов.

К третьей группе относятся  асинхронные системные вызовы. Процесс, использовавший асинхронный системный  вызов, никогда в нем не блокируется. Системный вызов инициирует выполнение необходимых операций ввода-вывода и немедленно возвращается, после чего процесс продолжает выполнять свою регулярную деятельность. Об окончании завершения операции ввода-вывода операционная система впоследствии информирует процесс изменением значений некоторых переменных, передачей ему сигнала или сообщения, или каким-либо еще способом. Необходимо четко понимать разницу между не блокирующимися и асинхронными вызовами. Не блокирующийся системный вызов для выполнения операции read вернется немедленно, но может прочитать запрошенное количество байт, меньшее количество или вообще ничего. Асинхронный системный вызов для этой операции также вернется немедленно, но требуемое количество байт рано или поздно будет прочитано в полном объеме.

 

Общие сведения об архитектуре компьютера

В простейшем случае процессор, память и многочисленные внешние  устройства связаны большим количеством  электрических соединений - линий, которые  в совокупности принято называть локальной магистралью компьютера. Внутри локальной магистрали линии, служащие для передачи сходных сигналов и предназначенные для выполнения сходных функций, принято группировать в шины. При этом понятие шины включает в себе не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам. В современных компьютерах выделяют, как минимум, три шины:

- Шину данных, состоящую из линий данных и служащую для передачи информации между процессором и памятью, процессором и устройствами ввода-вывода, памятью и внешними устройствами.

- Адресную шину, состоящую из линий адреса и служащую для задания адреса ячейки памяти или указания устройства ввода-вывода, участвующих в обмене информацией.

- Шину управления, состоящую из линий управления локальной магистралью и линий ее состояния, определяющих поведение локальной магистрали. В некоторых архитектурных решениях линии состояния выносятся из этой шины в отдельную шину состояния.

Количество линий, входящих в состав шины, принято называть разрядностью (шириной) этой шины. Ширина адресной шины, например, определяет максимальный размер оперативной памяти, которая может быть установлена в вычислительной системе. Ширина шины данных определяет максимальный объем информации, которая за один раз может быть получена или передана по этой шине.

Операции обмена информацией осуществляются при одновременном участии всех шин. Рассмотрим, к примеру, действия, которые должны быть выполнены для  передачи информации из процессора в  память. В простейшем случае необходимыми являются три действия:

- На адресной шине процессор должен выставить сигналы, соответствующие адресу ячейки памяти, в которую будет осуществляться передача информации.

- На шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть записана в память.

- После выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с памятью, что приведет к занесению необходимой информации по требуемому адресу.

Естественно, что приведенные выше действия являются необходимыми, но недостаточными при рассмотрении работы конкретных процессоров и микросхем памяти. Конкретные архитектурные решения могут требовать дополнительных действий, например, выставления на шину управления сигналов частичного использования шины данных (для передачи меньшего количества информации, чем позволяет ширина этой шины), выставления сигнала готовности магистрали после завершения записи в память, разрешающего приступить к новой операции, и т.д., однако общие принципы выполнения операции записи в память остаются одинаковыми.

В то время как память легко можно  представить себе в виде последовательности пронумерованных адресами ячеек, локализованных внутри одной микросхемы или набора микросхем, подобный подход неприменим к устройствам ввода-вывода. Внешние устройства разнесены пространственно и могут подключаться к локальной магистрали в одной точке или множестве точек, получивших название портов ввода-вывода. Тем не менее, точно так же, как ячейки памяти взаимно однозначно отображались в адресное пространство памяти, порты ввода-вывода можно взаимно однозначно отобразить в другое адресное пространство – адресное пространство ввода-вывода. При этом каждый порт ввода-вывода получает свой номер или адрес в этом пространстве. В некоторых случаях, когда адресное пространство памяти (размер которого определяется шириной адресной шины) задействовано не полностью (остались адреса, которым не соответствуют физические ячейки памяти), и протоколы работы с внешним устройством совместимы с протоколами работы с памятью, часть портов ввода-вывода может быть отображена непосредственно в адресное пространство памяти (так, например, поступают с видеопамятью дисплеев), правда тогда эти порты уже не принято называть портами. Надо отметить, что при отображении портов в адресное пространство памяти для организации доступа к ним в полной мере могут быть задействованы существующие механизмы защиты памяти без организации специальных защитных устройств.

В ситуации прямого отображения  портов ввода-вывода в адресное пространство памяти действия, требуемые для записи информации и управляющих команд в эти порты или для чтения данных из них и их состояний, ничем не отличаются от действий, производимых для передачи информации между оперативной памятью и процессором, и для их выполнения применяются те же самые команды. Если же порт отображен в адресное пространство ввода-вывода, то процесс обмена информацией инициируется специальными командами ввода-вывода и включает в себя несколько другие действия. Например, для передачи данных в порт необходимо выполнить следующее:

на адресной шине процессор должен выставить сигналы, соответствующие адресу порта, в который будет осуществляться передача информации, в адресном пространстве ввода-вывода;

на шину данных процессор должен выставить сигналы, соответствующие информации, которая должна быть передана в порт;

после выполнения действий 1 и 2 на шину управления выставляются сигналы, соответствующие операции записи и работе с устройствами ввода-вывода (переключение адресных пространств!), что приведет к передаче необходимой информации в требуемый порт.

Существенным отличием памяти от устройств ввода-вывода является то, что занесение информации в  память является окончанием операции записи, в то время как занесение информации в порт зачастую является инициализацией реального совершения операции ввода-вывода. Что именно должны совершать устройства, приняв информацию через свой порт, и каким именно образом они должны поставлять информацию для чтения из порта, определяется электронными схемами устройств, получившими названия контроллеров. Контроллер может непосредственно управлять отдельным устройством (например, контроллер диска), а может управлять несколькими устройствами, связываясь с их контроллерами посредством специальных шин ввода-вывода (шина IDE, шина SCSI и т.д.). Именно единообразие подключения внешних устройств к вычислительной системе является одной из составляющих идеологии, позволяющих добавлять новые устройства без перепроектирования всей системы.

Структура контроллера устройства

Контроллеры устройств  ввода-вывода весьма различны как по своему внутреннему строению, так  и по исполнению (от одной микросхемы до специализированной вычислительной системы со своим процессором, памятью  и т. д.), поскольку им приходится управлять совершенно разными приборами. Не вдаваясь в детали этих различий, мы выделим некоторые общие черты контроллеров, необходимые им для взаимодействия с вычислительной системой. Обычно каждый контроллер имеет, по крайней мере, четыре внутренних регистра, называемых регистрами состояния, управления, входных данных и выходных данных. Для доступа к содержимому этих регистров вычислительная система может использовать один или несколько портов, что не существенно для нас. Для простоты изложения будем считать, что каждому регистру соответствует свой собственный порт.

Регистр состояния содержит биты, значение которых определяется состоянием устройства ввода-вывода, и которые доступны только для чтения вычислительной системой. Эти биты индицируют завершение выполнения текущей команды на устройстве (бит занятости), наличие очередного данного в регистре выходных данных (бит готовности данных), возникновения ошибки при выполнении команды (бит ошибки) и т.д.

Регистр управления получает данные, которые записываются вычислительной системой для инициализации устройства ввода-вывода или выполнения очередной команды, а также изменения режима работы устройства. Часть битов в этом регистре может быть отведена под код выполняемой команды, часть битов кодировать режим работы устройства, бит готовности команды свидетельствует о том, что можно приступить к ее выполнению.

Регистр выходных данных служит для помещения в него данных для чтения вычислительной системой, а регистр входных данных предназначен для помещения в него информации, которая должна быть выведена на устройство. Обычно емкость этих регистров не превышает ширину линии данных (а чаще всего меньше ее), хотя некоторые контроллеры могут использовать в качестве регистров очередь FIFO для буферизации поступающей информации.

 

 

 

Способы подключения  устройств

При всем многообразии внешних  устройств ЭВМ и способов управления ими их программные интерфейсы могут  быть сведены к трем основным моделям, определяющимся способом подключения  устройств к ЭВМ:

- регистры устройств;

- контроллеры ввода-вывода;

- прямой доступ к памяти;

- каналы ввода-вывода;

- процессоры ввода-вывода.

Устройство может быть подключено к процессору через регистры устройства, как показано на Рисунке 6.1. Такое подключение применяется  для устройств, которые имеют простое управление, и обмен с ними ведется небольшими порциями данных (байт, слово, двойное слово). Устройство может иметь большое число регистров, которые, однако, сводятся к трем основным типам: регистры состояния - для передачи в процессор информации о состоянии, регистры управления - для передачи на устройство команд, регистры данных - для обмена данными между процессором и устройством. Регистры управления и состояния, как правило, являются однонаправленными, регистры данных могут быть как одно-, так и двунаправленными. Регистры устройств являются расширением адресного пространства ЭВМ. Расширение это может быть как явным - с доступом при помощи команд работы с памятью типа MOV, так и неявным - с отдельной адресацией портов ввода-вывода и доступом при помощи специальных команд типа IN/OUT.

 

 

 

    Рис.6.1. Прямое подключение устройства

 

Сколько-нибудь сложные  по управлению устройства подсоединяются к ЭВМ через контроллеры ввода-вывода (устройства управления), причем один контроллер может обслуживать несколько однотипных устройств, как показано на Рисунке 6.2. С точки зрения программного интерфейса это подключение ничем не отличается от предыдущего варианта, регистры контроллера выглядят для программы так же, как и регистры устройств.

 Рис.6.2. Подключение через контроллер

 

Быстродействие устройств  много ниже быстродействия центрального процессора, поэтому обычно после  выдачи команды на устройство программа  должна дожидаться ее завершения. Программа  может убедиться в завершении операции одним из двух способов: опросом или прерыванием. Опрос предполагает периодическое чтение регистра состояния устройства и проверку в нем признака завершения операции. Крайним случаем опроса является занятое ожидание - когда программа опрашивает устройство практически непрерывно, ничем другим не занимаясь. Помимо того, что при этом непроизводительно расходуется процессорное время, занятое ожидание еще и небезопасно: при отсутствии сигнала окончания от устройства (например, при сбое последнего) программа может "зависнуть" в состоянии занятого ожидания, а если она при этом была в непрерываемом состоянии - заблокировать работу всей системы.

Более действенным способом сигнализации об окончании операции является прерывание от устройства. При  большом разнообразии механизмов прерываний в разных архитектурах вычислительных систем все они обеспечивают сохранение вектора состояния прерванного процесса и идентификацию устройства, приславшего прерывание. При использовании прерываний ОС после выдачи команды ввода-вывода на устройство переводит процесс в состояние ожидания. Прерывание, присланное устройством, обрабатывается ядром ОС, которое при этом разблокирует процесс, ожидающий завершения операции.

Для устройств, с которыми обмен ведется большими порциями информации, применяется прямой доступ к памяти (ПДП), показанный на Рисунке 6.3. Контроллер ПДП работает параллельно с центральным процессором и обменивается данными прямо с оперативной памятью, минуя центральный процессор. Сам контроллер ПДП выглядит для программы как устройство с доступом через регистры. Программа должна его запрограммировать, записав в его регистры адрес области оперативной памяти, с которой происходит обмен, и размер блока данных, а затем запустить операцию, которая инициирует прямой обмен. Регистр данных контроллера ПДП при этом используется только для передачи управляющей информации. Об окончании обмена программа может узнать либо по прерыванию, либо опрашивая регистр состояния контроллера. Контроллер ПДП обычно содержит собственную буферную память для сглаживания разницы в быстродействии устройства и оперативной памяти. Напомним, что аппаратура ПДП обычно не обеспечивает динамическую трансляцию адресов. Поэтому ОС, получив от процесса запрос на выполнение операции ввода-вывода через ПДП, фиксирует в реальной памяти ту часть виртуального адресного пространства программы, с которой происходит обмен - до окончания обмена. Отметим также, что непрерывное виртуальное адресное пространство процесса может отображаться в несмежные страничные кадры реальной памяти, поэтому ОС может водить-выводить непрерывный с точки зрения процесса блок данных за несколько операций обмена.

Рис.6.3. Подключение  через ПДП 

 

В сущности, и контроллер обычного устройства, и контроллер ПДП представляют собой специализированные процессорные устройства, но более полно это качество присуще каналу ввода-вывода. Каналы представляют собой специализированные процессоры, имеющие свою систему команд и работающие параллельно с центральным процессором, но использующие ту же оперативную память. В отличие от контроллеров, которые являются специализированными по типам устройств, каналы являются универсальными процессорами ввода-вывода, к одному каналу могут быть одновременно подсоединены контроллеры разных устройств. Работа канала во многом похожа на работу контроллера ПДП: канал программируется, а затем запускается операция, в ходе которой канал обеспечивает прямой обмен с оперативной памятью, минуя центральный процессор. Подключение через канал показано на Рисунке 6.4.

    Рис.6.4. Подключение через канал ввода-вывода

 

Идея канала ввода-вывода, впервые реализованная в System/360 фирмы IBM, была впоследствии воплощена в  ряде других архитектур. Ввиду своей  продуктивности эта идея без концептуальных изменений была перенесена и в System/370, и в System/390, и отказа от нее в перспективе также не предвидится. В последующем изложении мы опираемся именно на эти реализации каналов ввода-вывода.

Существует несколько  типов каналов (селекторный, мультиплексный, байт-мультиплексный), предназначенных для подключения устройств с разными скоростями обмена, но для программиста все они выглядят одинаково. Средства программирования канала, во-первых, гораздо более мощные и гибкие, чем контроллера ПДП, во-вторых, позволяют унифицировать программирование ввода-вывода для различных устройств.

 

Деление программного обеспечение ввода-вывода на четыре слоя

 

 

Обработка прерываний,

Драйверы устройств,

Независимый от устройств  слой операционной системы,

Пользовательский слой программного обеспечения.

Драйверы устройств

Весь зависимый от устройства код помещается в драйвер  устройства. Каждый драйвер управляет  устройствами одного типа или, может  быть, одного класса.

В операционной системе  только драйвер устройства знает  о конкретных особенностях какого-либо устройства. Например, только драйвер диска имеет дело с дорожками, секторами, цилиндрами, временем установления головки и другими факторами, обеспечивающими правильную работу диска.

Независимый от устройств слой операционной системы

Большая часть программного обеспечения ввода-вывода является независимой от устройств. Точная граница между драйверами и независимыми от устройств программами определяется системой, так как некоторые функции, которые могли бы быть реализованы независимым способом, в действительности выполнены в виде драйверов для повышения эффективности или по другим причинам.

Типичными функциями  для независимого от устройств слоя являются: обеспечение общего интерфейса к драйверам устройств, именование устройств, защита устройств, обеспечение независимого размера блока, буферизация, распределение памяти на блок-ориентированных устройствах, распределение и освобождение выделенных устройств, уведомление об ошибках.

Пользовательский  слой программного обеспечения

Хотя большая часть  программного обеспечения ввода-вывода находится внутри ОС, некоторая его часть содержится в библиотеках, связываемых с пользовательскими программами. Системные вызовы, включающие вызовы ввода-вывода, обычно делаются библиотечными процедурами.

Другой категорией программного обеспечения ввода-вывода является подсистема спулинга (spooling). Спулинг — это способ работы с выделенными устройствами в мультипрограммной системе.

Функции независимого от устройств слоя:

обеспечение общего интерфейса к драйверам устройств,

именование устройств,

защита устройств,

обеспечение независимого размера блока,

буферизация,

распределение памяти на блок-ориентированных устройствах,

распределение и освобождение выделенных устройств,

уведомление об ошибках.

Большая часть программного обеспечения ввода-вывода является независимой от устройств. Точная граница между драйверами и независимыми от устройств программами определяется системой, так как некоторые функции, которые могли бы быть реализованы независимым способом, в действительности выполнены в виде драйверов для повышения эффективности или по другим причинам.

 

Буферизация и кэширование

Хотя блокировки и  не влияют на результат выполнения процесса и не отражаются на его  виртуальном времени, они сказываются  на реальном времени его выполнения. Для интерактивных процессов они могут стать основным фактором, определяющим время реакции процесса. Невыгодны блокировки и для ОС, так как каждая блокировка - это переключение процессов, а следовательно, накладные расходы. Одним из способов, позволяющим избежать блокировок (или, по крайней мере, уменьшить их количество), является буферизация данных.

Под буфером обычно понимается некоторая область памяти для запоминания информации при обмене данных между двумя устройствами, двумя процессами или процессом и устройством. Для устройства ввода-вывода назначается буферная область в оперативной памяти. Обмен данными происходит между процессом и буферной областью, а обмен между буферной областью и устройством выполняет ОС независимо от выполнения процесса. Если, например, выполнение системного вызова write будет включать в себя только пересылку данных в оперативной памяти, то блокировка процесса на время выполнения этого вызова не нужна. Буферизация, таким образом, сглаживает различия в скоростях работы производителя и потребителя информации и позволяет избежать излишних блокировок.

Особенно существенный эффект буферизация может дать при  последовательном вводе-выводе, так  как при вводе ОС может предсказать, какой блок информации понадобится  следующим и произвести его упреждающее чтение в буфер. Еще один полезный эффект буферизации - ОС имеет возможность сгруппировать данные в буфере и производить обмен с внешним устройством большими блоками.

Существуют три причины, приводящие к использованию буферов  в базовой подсистеме ввода-вывода:

- Первая причина буферизации – это разные скорости приема и передачи информации, которыми обладают участники обмена. Рассмотрим, например, случай передачи потока данных от клавиатуры на модем. Скорость, с которой поставляет информацию клавиатура, определяется скоростью набора текста человеком и обычно существенно меньше скорости передачи данных модемом. Для того чтобы не занимать модем на все время набора текста, делая его недоступным для других процессов и устройств, разумно накапливать введенную информацию в буфере или нескольких буферах достаточного размера и отсылать ее через модем после заполнения буферов.

- Вторая причина буферизации – это разные объемы данных, которые могут быть приняты или получены участниками обмена единовременно. Возьмем другой пример. Пусть информация поставляется модемом и записывается на жесткий диск. Помимо обладания разными скоростями совершения операций модем и жесткий диск относятся к разным типам устройств. Модем является символьным устройством и выдает данные байт за байтом, в то время как диск является блочным устройством и для проведения операции записи для него требуется накопить необходимый блок данных в буфере. Здесь также можно применять более одного буфера. После заполнения первого буфера модем начинает заполнять второй одновременно с записью первого на жесткий диск. Поскольку скорость работы жесткого диска в тысячи раз больше, чем скорость работы модема, то к моменту заполнения второго буфера операция записи первого будет завершена, и модем снова может заполнять первый буфер одновременно с записью второго на диск.

- Третья причина буферизации связана с необходимостью копирования информации из приложений, осуществляющих ввод-вывод, в буфера ядра операционной системы и обратно. Допустим, что некоторый пользовательский процесс пожелал вывести информацию из своего адресного пространства на внешнее устройство. Для этого он должен выполнить системный вызов с обобщенным названием write, передав в качестве параметров адрес области памяти, где расположены данные, и их объем. Если внешнее устройство временно занято, то возможна ситуация, когда к моменту его освобождения содержимое требуемой области окажется испорченным (например, при использовании асинхронной формы системного вызова). Чтобы избежать возникновения подобных ситуаций, проще всего в начале работы системного вызова откопировать необходимые данные в буфер ядра операционной системы, постоянно находящийся в оперативной памяти, и выводить их на устройство из этого буфера.

Буферизация не обязательно  означает дополнительную пересылку данных в оперативной памяти. Методы с очередями предоставляют три альтернативных режима управления буферизацией:

- режим пересылки - данные пересылаются в оперативной памяти между рабочей областью процесса и буфером;

- режим указания - данные не пересылаются; при вводе процесс получает от ОС адрес буфера, содержащего введенные данные, и может использовать его как рабочую область, при выводе процесс получает от ОС адрес свободного выводного буфера и использует его как свою рабочую область, формируя в ней данные для вывода;

- режим подстановки - данные не пересылаются; при вводе процесс получает от ОС адрес заполненного вводного буфера, а свою рабочую область передает во вводной буферный пул; при выводе процесс передает в выводной пул свою рабочую область, заполненную выводными данными, а взамен получает свободный буфер из пула.

Под словом кэш (cache – “наличные”), обычно понимают область быстрой памяти, содержащую копию данных, расположенных где-либо в более медленной памяти, предназначенную для ускорения работы вычислительной системы.

В базовой подсистеме ввода-вывода не следует смешивать  два понятия: буферизация и кэширование, хотя зачастую для выполнения этих функций отводится одна и та же область памяти. Буфер часто содержит единственный набор данных, существующий в системе, в то время как кэш, по своему определению, содержит копию данных, существующих где-нибудь еще. Например, буфер, используемый базовой подсистемой для копирования данных из пользовательского пространства процесса при выводе на диск, может в свою очередь использоваться как кэш для этих данных, если операции модификации и повторного чтения этого блока выполняются достаточно часто.

В Unix буферизация обмена с дисковыми накопителями (кэширование) является тотальной, через кэш проходят все данные, которыми ОС и процессы обмениваются с дисками, и под кэш отводится значительная часть оперативной памяти. Кэширование дает значительный эффект и при случайном (непоследовательном) обмене, характерном для многозадачной многопользовательской ОС. В дескрипторе каждого буфера в кеше имеются поля:

- состояние буфера (свободен / содержит правильную информацию / грязный  / заблокирован / занят в операции ввода-вывода / ожидается каким-либо процессом);

- адрес на внешней памяти блока информации, содержащегося в буфере;

- указатели, связывающие буфера в хеш-очереди и в список свободных.

 

Spooling и захват устройств.

Под словом spool мы будем понимать буфер, который содержит входные или выходные данные для устройства, на котором следует избегать чередования его использования (возникновения interleaving) различными процессами. Правда, в современных вычислительных системах spool практически не используется для ввода данных, а в основном предназначен для накопления выходной информации.

Рассмотрим в качестве внешнего устройства принтер. Хотя принтер не может печатать информацию, поступающую одновременно от нескольких процессов, может оказаться желательным разрешить процессам совершать вывод на принтер параллельно. Для этого операционная система вместо передачи информации напрямую на принтер накапливает выводимые данные в буферах на диске, организованных в виде отдельного spool файла для каждого процесса. После завершения некоторого процесса, соответствующий ему spool файл ставится в очередь для реальной печати. Механизм, обеспечивающий подобные действия, и получил название spooling.

В некоторых операционных системах вместо использования spooling’а для устранения race condition применяется  механизм монопольного захвата устройств  процессами. Если устройство свободно, то один из процессов может получить его в монопольное распоряжение. При этом все другие процессы при попытке осуществления операций над этим устройством будут либо блокированы (переведены в состояние ожидание), либо получат информацию о невозможности выполнения операции до тех пор, пока процесс, захвативший устройство, не завершится или явно не сообщит операционной системе о своем отказе от его использования. Обеспечение spooling’а и механизма захвата устройств является прерогативой базовой подсистемы ввода-вывода.

 

 

Список используемой литературы

 

  1. Угринович Н.Д.: Информатика и информационные технологии, М.:БИНОМ, 2003.2

  2. Иртегов Д.В., Введение в операционные системы, БХВ-Петербург, 2002, 613 стр.

  3. Леонтьев В.П. «Новейшая энциклопедия ПК 2003» - 5-е изд., перераб. и доп. – Москва: ОЛМА-ПРЕСС, 2003.

  4. http://asmo.0fees.net. Лекция 15. Система управления вводом-выводом. Физические принципы организации ввода-вывода. Общие сведения об архитектуре компьютера. Структура контроллера устройства. Опрос устройств и прерывания.

  5. http://asmo.0fees.net. Лекция 16. Структура системы ввода-вывода. Функции базовой подсистемы ввода-вывода. Блокирующиеся, не блокирующиеся и асинхронные системные вызовы.

  6. http://www.ibm.com/developerworks/ru. Управление вводом-выводом


написать администратору сайта