Условие равновесия в термодинамической системе. Условие равновесия в термодинамической системе Содержание
Скачать 99.38 Kb.
|
Условие равновесия в термодинамической системеСодержание1. Различные виды равновесия 1.1 Неполное (Метастабильное) равновесие 1.2 Фазовое равновесие 1.3 Локальное термодинамическое равновесие 2. Критерии обратимости в качестве критериев равновесия 3. Некоторые условия устойчивости равновесия Список использованных источников 1. Различные виды равновесия 1.1 Неполное (Метастабильное) равновесиеВ формулировке принципа необратимости говорится, что предельное (равновесное) состояние наступает с течением времени, рано или поздно, само собой, и что его признаком является прекращение всяких (не флуктуационных) изменений в системе. Легко, однако, привести примеры, когда это “с течением времени” растягивается до бесконечности, а система вообще не переходит “сама собой” в равновесное состояние, задерживаясь в каком-то другом состоянии, в котором так же не видно никаких изменений. Рассмотрим, например, газообразную смесь водорода и йода, адиабатически изолированную в закрытом сосуде. Количество атомов йода и атомов водорода можно взять произвольно. В предельном состоянии, в которое эта смесь должна перейти по принципу необратимости, все ее свойства должны однозначно определяться объемом сосуда, энергией смеси и количествами находящихся в ней атомов H и J. В частности, в предельном состоянии совершенно определенное количество атомов Н должно соединиться в молекулы Н2, совершенно определенное ко личество атомов J – в молекулы J2 и должно получиться совершенно определенное количество молекул НJ. Следовательно, при приближении смеси к равновесию в ней должны идти реакции и т. д. Однако если температура газа не очень высока, то такие превращения (например, диссоциация молекул Н2) при столкновении частиц почти не происходят. Да и вообще, перегруппировка атомов в молекулах – процесс, часто идущий без катализаторов очень медленно и трудно. Поэтому в действительности, когда изменения в смеси прекратятся, в ней окажутся практически те же количества свободных атомов Н и J и те же количества молекул Н2, J2 и НJ, которые имелись изначально, и в таком состоянии смесь может простоять очень долго. Она “задерживается” в состоянии, по существу, вовсе не равновесном, в чем можно убедиться, катализируя не идущие в ней реакции. Напри мер, если смесь осветить, то в ней начнется очень бурное, взрывное превращение молекул Н2 и J2 в НJ и смесь перейдет в новое “равновесие”, опять-таки неполное, поскольку реакция Н2 2Н все равно еще не будет идти. Если полное равновесие никогда не достигается, то сам принцип необратимости как будто теряет свой абсолютный характер; по- видимому, требуется новая его формулировка. Вопрос этот нельзя решить, не выяснив смысла понятия неполного равновесия. Если во обще различать равновесные (хотя бы и не вполне) и неравновесные состояния, то нужно понять, чем же они различаются. В чем прежде всего различие между полным и неполным равновесием? Неполное равновесие – это настоящее равновесие в системе, в которой некоторое свойство, способное меняться, когда нет за держивающих факторов, фиксировано. Величины, значения которых определяют какое-либо внутреннее свойство системы, часто называют внутренними параметрами. Можно сказать, что неполное равновесие – это настоящее равновесие в системе с фиксированными внутренними параметрами. Фиксирование внутренних параметров можно представить себе как результат действия некоторых дополнительных сил, под влиянием которых отдельные медленно идущие в системе процессы прекращаются вовсе. Конечно, такие силы вводятся только абстрактно. Система с фиксированными внутренними параметрами как будто становится другой системой – с другими внутренними движениями или с другим множеством микросостояний. Настоящее равновесие достигается тогда, когда нет никаких причин, мешающих внутренним движениям, и когда все идущие в системе процессы проходят до конца. Если же некоторые процессы протекают очень медленно и мы не дожидаемся их завершения или если какие-либо причины вообще прекращают отдельные внутренние процессы, то мы имеем дело как будто с новой системой, многообразие микросостояний которой меньше, чем у незаторможенной. В примере с газовой смесью роль внутренних параметров игра ют количества молекул Н2 и J2. Состояния, в которых количества этих молекул отличаются от первоначальных, вовсе исключаются, так что молекулы Н2 и J2 рассматриваются как неделимые частицы. В примере с магнитом считается, что магнитные моменты отдельных доменов не могут меняться. Таким образом, мы высказываем следующее предположение: неполное равновесие является настоящим равновесием в системе с фиксированными внутренними параметрами. Чтобы его доказать, надо убедиться в применимости принципа необратимости к системам с фиксированными параметрами. Вряд ли есть основания сомневаться в этом. Однако нужно иметь в виду, что фиксирование внутренних параметров не должно быть таким, чтобы система фактически распалась на не связанные между собой части. Целесообразно различать случаи, когда скрытые движения совершенно не ограничены (в той мере, в какой это допускают фиксированные параметры), даже при неизменных механических параметрах отдельных частей системы, и случаи, когда отдельные части системы вообще изолированы друг от друга или могут передавать друг другу движение только при изменении механических параметров отдельных частей, т. е. через посредство механических систем. В первом случае мы будем называть систему термически однородной, а во втором – термически неоднородной. Термически однородная система с фиксированными параметрами полностью подчиняется принципу необратимости и переходит при неизменных внешних условиях в предельное состояние, которое будет для нее настоящим равновесием; для системы со свободными внутренними параметрами подобное состояние является неполным равновесием. Это неполное равновесие не зависит от начального состояния системы, если фиксированные параметры вначале имели нужные (фиксированные) значения. В неполном равновесии также не остается никакого следа от приведшего к нему процесса. Например, смесь определенных количеств молекул Н2 и J2 можно взять в данном объеме и с данной энергией в самых разнообразных начальных состояниях: молекулы смеси можно произвольно разместить в объеме, между ними можно самыми разнообразными способами распределить энергию. Окончательное (неполное) равновесие (равновесие при неизменных количествах молекул Н2 и J2) будет всегда одно и то же. Поскольку любое микросостояние рассматриваемой системы с заданными количествами Н2 и J2 может перейти в любое другое такое микросостояние, система термически однородна. Для термически неоднородных систем принцип необратимости не имеет места, и понятно почему. Энергия каждой части такой системы может и не быть фиксирована. Предполагается, что энергия любой части меняется только при изменении ее механических параметров. Однако если силы, действующие со стороны нескольких частей системы вдоль этих параметров, в сумме равны нулю (уравновешиваются), то параметры остаются неизменными. Тогда энергия рассматриваемой части системы будет постоянной и в ней наступит равновесие, определяемое значениями ее механических параметров и ее энергией. Но эти энергия (при данной общей энергии системы) и значения механических параметров (при данных значениях внешних для всей системы механических параметров) могут быть разными; тогда вся система будет иметь несколько равновесий при одних и тех же внешних условиях и одной и той же энергии. рие термодинамический изобарный Фазовое равновесиеФазовое равновесие, одновременное существование термодинамически равновесных фаз в многофазной системе. Простейшие примеры – равновесие жидкости со своим насыщенным паром, равновесие воды и льда при температуре плавления, расслоение смеси воды с триэтиламином на два несмешивающихся слоя (две фазы), отличающихся концентрациями. В равновесии могут находиться (в отсутствии внешнего магнитного поля) две фазы ферромагнетика с одинаковой осью намагничивания, но различным направлением намагниченности; нормальная и сверхпроводящая фазы металла во внешнем магнитном поле и т.д. При переходе в условиях равновесия частицы из одной фазы в другую энергия системы не меняется. Другими словами, при равновесии химические потенциалы каждой компоненты в различных фазах одинаковы. Отсюда следует фаз правилоГиббса: в веществе, состоящем из k компонент, одновременно могут существовать не более чем k + 2 равновесные фазы. Например, в однокомпонентном веществе число одновременно существующих фаз не превосходит трёх (см. Тройная точка).Число термодинамических степеней свободы, т. е. переменных (физических параметров), которые можно изменять, не нарушая условий Фазовое равновесие, равно k + 2 – j, где j – число фаз, находящихся в равновесии. Например, в двухкомпонентной системе три фазы могут находиться в равновесии при разных температурах, но давление и концентрации компонент полностью определяются температурой. Изменение температуры фазового перехода (кипения, плавления и др.) при бесконечно малом изменении давления определяется Клапейрона – Клаузиуса уравнением. Графики, изображающие зависимость одних термодинамических переменных от других в условиях Фазовое равновесие, называются линиями (поверхностями) равновесия, а их совокупность – диаграммами состояния. Линия Фазовое равновесие может либо пересечься с другой линией равновесия (тройная точка), либо кончиться критической точкой. В твёрдых телах из-за медленности процессов диффузии, приводящих к термодинамическому равновесию, возникают неравновесные фазы, которые могут существовать наряду с равновесными. В этом случае правило фаз может не выполняться. Правило фаз не выполняется также и в том случае, когда на кривой равновесия фазы не отличаются друг от друга (см. Фазовые переходы). В массивных образцах в отсутствии дальнодействующих сил между частицами число границ между равновесными фазами минимально. Например, в случае двухфазного равновесия имеется лишь одна поверхность раздела фаз. Если хотя бы в одной из фаз существует дальнодействующее поле (электрическое или магнитное), выходящее из вещества, то энергетически более выгодны равновесные состояния с большим числом периодически расположенных фазовых границ (домены ферромагнитные и сегнетоэлектрические, промежуточное состояние сверхпроводников) и таким расположением фаз, чтобы дальнодействующее поле не выходило из тела. Форма границы раздела фаз определяется условием минимальности поверхностной энергии. Так, в двухкомпонентной смеси при условии равенства плотностей фаз граница раздела имеет сферическую форму. Огранка кристаллов определяется теми плоскостями, поверхностная энергия которых минимальна. Локальное термодинамическое равновесиеОдно из основных понятий термодинамики неравновесных процессов и механики сплошных сред; равновесие в очень малых (элементарных) объёмах среды, содержащих всё же столь большое число частиц (молекул, атомов, ионов и др.), что состояние среды в этих физически бесконечно малых объёмах можно характеризовать темп-рой Т(х), хим. потенциалами (х)и др. термодинамические параметрами, но не постоянными, как при полном равновесии, а зависящими от пространств, координат х и времени. Ещё один параметр Л.Т.Р.- гидродинамическая скорость и (х) - характеризует скорость движения центра масс элемента среды. При Л.Т.Р. элементов среды состояние среды в целом неравновесно. Если малые элементы среды рассматривать приближённо как термодинамически равновесные подсистемы и учитывать обмен энергией, импульсом и веществом между ними на основе уравнений баланса, то задачи термодинамики неравновесных процессов решаются методами термодинамики и механики. В состоянии Л.Т.Р. плотность энтропии s(z)на единицу массы является функцией плотности внутренней энергии и концентраций компонентов Сk (x), такой же, как и в состоянии равновесия термодинамического. Термодинамического равенства остаются справедливыми для элемента среды при движении вдоль пути его центра масс: где grad, (х)- давление, - удельный объём. Статистическая физика позволяет уточнить понятие Л.Т.Р. и указать пределы его применимости. Понятию Л.Т.Р. соответствует локально равновесная функция распределения f плотности энергии, импульса и массы, которая отвечает максимуму информационной энтропии при заданных средних значениях этих величин как функций координат и времени: где Z - статистическая сумма, (х) - динамическая переменные (функции координат и импульсов всех частиц системы), соответствующие плотности энергии (в системе координат, движущейся с гидродинамической скоростью) и плотности массы. При помощи такой функции распределения можно определить понятие энтропии неравновесного состояния как энтропии такого локально равновесного состояния, которое характеризуется теми же значениями плотностей энергии, импульса и массы, что и рассматриваемое неравновесное состояние. Однако локально равновесное распределение позволяет получать лишь уравнения т. н. идеальной гидродинамики, в которых не учитываются необратимые процессы. Для получения уравнений гидродинамики, учитывающих необратимые процессы теплопроводности, вязкости и диффузии (т. е. переноса явления), требуется обращаться к кинетическому уравнению для газов или к Лиувилля уравнению, справедливому для любой среды, и искать такие их решения, которые зависят от координат и времени лишь через средние значения параметров, определяющих неравновесное состояние. В результате получается неравновесная функция распределения, которая позволяет вывести все уравнения, описывающие процессы переноса энергии, импульса и вещества (уравнения диффузии, теплопроводности и Навье - Стокса уравнения) [1]. 2. Критерии обратимости в качестве критериев равновесияПользуясь тем, что п изохорно-изотермическом обратимом процессе dutU = Tdut S. Выведем критерии равновесия произвольной термодинамической системы, основываясь, на том, что равновесие – необходимое условие обратимости процесса и что, таким образом, каждое из состояний, через которые проходит система в обратимом процессе, оказывается состоянием равновесия. Отсюда следует: Критерии обратимости всегда являются вместе с тем критериями равновесия. Этим обстоятельством и пользуются в термодинамике: определяют состояния, в которых может происходить обратимый процесс, н каждое такое состояние считают состоянием равновесия. В настоящее время в термодинамике нет других средств нахождения состояний равновесия. Однако, пользуясь критериями обратимости вместо критериев равновесия, нужно помнить, что равновесие- необходимое, но недостаточное условие обратимости, т. с, что, кроме равновесных состояний, в которых может начаться обратимый процесс, существуют и такие равновесные состояния, в которых обратимый процесс невозможен. Из этого явствует, что, применяя критерии обратимости в качестве критериев равновесия, можно определить не все состояния равновесия, а только часть их. Этим объясняется тот хорошо известный факт, что все предсказанные термодинамикой состояния равновесия, действительно имеют место; но, кроме них, наблюдаются и такие состояния, которые термодинамикой не предсказываются. Между тем в некоторых таких смесях в довольно значительном интервале температур при постоянном объеме равновесный состав также остается постоянным, т. е. имеется непрерывный ряд равновесий и только одно из них указывается термодинамикой . 3. Некоторые условия устойчивости равновесия Специальный термодинамический анализ позволяет показать, что из соображений термодинамической устойчивости системы для любого вещества должны выполняться следующие соотношения: (1) (2) т.е., во-первых, изохорная теплоемкость Сv всегда положительна и, во-вторых, в изотермическом процессе увеличение давления всегда приводит к уменьшению объема вещества. Условие (1) называют условием термической устойчивости, а условие (2) – условием механической устойчивости. Условия (1) и (2) можно объяснить так называемым принципом смещения равновесия (принцип Ле Шателье – Брауна), смысл которого заключается в том, что, если система, находившаяся в равновесии, выводится из него, соответствующие параметры системы изменяются таким образом, чтобы система вернулась в состояние равновесия. Эти условия термодинамической устойчивости системы ясны и без формальных выкладок. Представим себе, что теплоемкость сv некоторого вещества отрицательна. Это означало бы, поскольку cv = dqv/dT, что подвод теплоты к веществу при постоянном объеме этого вещества приводил бы не к повышению, а к понижению температуры. Таким образом, чем больше теплоты мы подводили бы к веществу в изохорном процессе, тем больше становилась бы разность между температурами этого вещества и источника теплоты (окружающая среда). Для вывода условий устойчивости можно предположить, что при малом отклонении от положения равновесия система однородна по внутренним параметрам T иp, ноTTo,PPo, пока не достигнуто равновесие. Можно обойтись и без этого предположения и рассмотреть не всю систему, а столь малую ее часть, что ее можно считать однородной поTиp. Результат будет получен один и тот же. Согласно (49) запишем dU-TcdS+pcdV=-Tc(diS+diSпов) Если система выведена из условия устойчивого равновесия, то поскольку правая часть положительна, то dU-TcdS+pcdV>0. При малом, но не бесконечно малом отклонении от устойчивого равновесия должно быть U-TcS+pcV>0 (51) При этом U=TS-pV . Подставляя это выражение в (51) получим условия устойчивости равновесия в виде TS-pV>0, (52) где T=T-Tc,p=p-pc отклоненияT иp от равновесных значений поскольку в равновесииT=Tc, p=pc. Для изобарных (p=0) и изохорных (V=0) систем условия устойчивости равновесия (52) принимают видTS>0 Будем неограниченно приближать систему к равновесию, меняя S. Тогда В изобарных и изохорных условиях Следовательно, условие устойчивости изобарного равновесия имеет вид , (53)то есть , . (54) Условие устойчивости изохорного равновесия , (55) то есть , . (56) В изотермической (T=0)и изэнтропической (S=0)системах условие (52) принимает видpV<0. Будем неограниченно приближать систему к равновесию, меняя V. Тогда в изотермических, а в изэнтропических условиях Следовательно, условие устойчивости изотермического равновесия имеет вид . То есть (57) илиT>0 (58) Для изэнтропического равновесия - , то есть , (59) илиS>0(60) Неравенства , , , называют условиями термической устойчивости, а неравенства , ,T>0,S>0 называют условием механической устойчивости равновесия системы. Равновесие изобарно-изотермической системы устойчиво при одновременном выполнении как условия термической (54), так и механической устойчивости (58)T>0. Физический смысл условий устойчивости ясен из их вывода. Термодинамическое равновесие термически устойчиво, если термические флуктуации (отклонения от равновесного значения энтропииSприT=constили температурыTприS=consrt )выводят систему в такое неравновесное состояние, из которого она возвращается в исходное равновесное состояние. Термодинамическое состояние механически устойчиво, если“механические”флуктуации (отклонения от равновесного объемаVприp=const или давленияPприV=const) выводят систему в такое неравновесное состояние, из которого она возвращается в исходное равновесное. Термодинамическое равновесие неустойчиво, если сколь угодно малые флуктуации выводят систему в такое неравновесное состояние, из которого она не возвращается в исходное равновесное, а движется к некоторому иному равновесному. Следует отметить, что, если в данных условиях рассматриваемое равновесное состояние оказывается неустойчивым (не выполнены условия устойчивости), то при этих условиях существует непременно некоторое иное, устойчиво равновесное состояние. Система не может находиться в неустойчивом равновесии сколь - нибудь долго. Понятие неустойчиво равновесное состояния достаточно условно. Строго говоря, неустойчиво равновесные состояния не реализуются. Могут существовать лишь неравновесные состояния, в какой-то мере близкие или приближающиеся к неустойчиво равновесным. Если выполнены все условия устойчивости (54),(56),(57),(58), то все четыре характеристик CP,CV,ST положительны. При этом ,как видно, из (43)CP>CVи, как следует из (37)T>S. Как видно из (36), Pможет быть и положительным и отрицательным; знакPне определяется условиями устойчивости, Из опыта известно, что почти всегдаP>0. При этом, как следует из (39) и (40) изохорный и адиабатический коэффициенты давления при выполнении условий устойчивости V>0, S>0. Если выполнены условия CP>0, T>0, то из (41) следуетP>Sи, вообще говоря, P и S могут иметь разный знак. Список использованных источников1Сорокин, В. С. Макроскопическая необратимость и энтропия. Введение в термодинамику. / В.С. Сорокин. – М.: ФИЗМАТЛИТ, 2004. – 176 с. 2Михеева, Е.В. Физическая и коллоидная химия: учебное пособие / Е.В.Михеева, Н.П.Пикула; Томский политехнический университет. – Томск: ТПУ, 2010. – 267 с. 3Де Гроот, С. Неравновесная термодинамика. / С. Де Гроот, П. Мазур. М.: Мир, 1964. – 456 с. 4Химия и химическая технология / Некоторые условия устойчивости равновесия [Электронный ресурс] // URL: http://www.chem21.info/page/104.html (дата обращения 18.04.2016). |