12.01.23 Моя Тех защита информации. Устройство, предназначенное для преобразования акустических колебаний в электрические колебания
Скачать 23.88 Kb.
|
Слайд 2 Микрофон — устройство, предназначенное для преобразования акустических колебаний в электрические колебания. (работают по слайду 2) Диктую после слайда 2 Микрофоны характеризуются следующими параметрами: Чувствительность микрофона — это отношение напряжения на выходе микрофона к воздействующему на него звуковому давлению при заданной частоте (как правило 1000 Гц), выраженное в милливольтах на паскаль (мВ/Па). Чем больше это значение, тем выше чувствительность микрофона. Номинальный диапазон рабочих частот — диапазон частот, в котором микрофон воспринимает акустические колебания и в котором нормируются его параметры. Неравномерность частотной характеристики — разность между максимальным и минимальным уровнем чувствительности микрофона в номинальном диапазоне частот. Модуль полного электрического сопротивления — нормированное значение выходного или внутреннего электрического сопротивления на частоте 1 кГц. Характеристика направленности — зависимость чувствительности микрофона (в свободном поле на определённой частоте) от угла между осью микрофона и направлением на источник звука. Уровень собственного шума микрофона — выраженное в децибелах отношение эффективного значения напряжения, обусловленного флуктуациями давления в окружающей среде и тепловыми шумами различных сопротивлений в электрической части микрофона, к напряжению, развиваемому микрофоном на нагрузке при воздействии на микрофон сигнала с эффективным давлением 1 Па. Динамический диапазон микрофона - это разность между самым тихим сигналом и самым громким, который микрофон может воспроизвести без искажений. Слайд 3 Среди всех типов микрофонов, используемых в настоящее-время, микрофоны на основе конденсаторов считаются наиболее перспективными. На рис. 1 представлена принципиальная схема конденсаторного микрофона. Измеряемое давление воздействует на гибкую и тонкую (толщиной 10-4-20 мкм) диафрагму, играющую роль подвижной обкладки в датчике смещения емкостного типа. Другая обкладка фиксирована и имеет отверстия для демпфирования: при движении диафрагмы воздух протекает через эти отверстия, происходит вязкостная диссипация энергии. Это демпфирование используется для контроля резонансной амплитуды диафрагмы и позволяет скорректировать высокочастотную часть характеристики преобразования в соответствии с объектом измерений (давление, свободное поле, диффузное поле или падение под случайными углами). Капиллярный канал позволяет уравнять среднее давление по обе стороны мембраны. Он определяет низкочастотный отклик и обеспечивает защиту по отношению к колебаниям атмосферного давления. В зависимости от типа мембраны различают три типа емкостных микрофонов: измерительные микрофоны с использованием внешнего напряжения питания, измерительные электретные микрофоны и бытовые электретные микрофоны. В первых двух типах микрофонов используются предварительно напряженные металлические мембраны, а в третьем — мембраны из предварительно поляризованной пластмассы. В микрофоне второго типа электретная мембрана плотно прилегает к фиксированной обкладке и не играет никакой механической роли. Значительное различие между измерительными и бытовыми микрофонами состоит, следовательно, в природе силы, действующей на мембрану: акустическое усилие в случае металлических мембран и изменение объема воздуха за пластмассовой мембраной. Заметим, что в настоящее время изготовление пластмассовых мембран, которые сохраняли бы механическое напряжение в течение длительного времени, представляет значительную сложность. Таким образом, микрофоны с пластмассовой мембраной являются обычными микрофонами с более узкой частотной полосой пропускания, чем у микрофонов с металлической мембраной. Слайд 4 Электретные микрофоны — представляют из себя практически те же конденсаторные микрофоны, но постоянное напряжение в них обеспечивается зарядом электрета, тонким слоем нанесённого на мембрану и сохраняющим этот заряд продолжительное время Поскольку электретные микрофоны обладают высоким выходным импедансом (имеющим емкостный характер, конденсатор ёмкостью порядка десятков пФ), то для его уменьшения, как правило, в корпус микрофона встраивают истоковый повторитель на полевом n-каналыюм транзисторе с р-n переходом. Выходной импеданс – это величина импеданса между выходными устройствами предусилителя или усилителя (обычно транзисторами, но, возможно, трансформатором или лампой) и фактическими выходными клеммами компонента. Это включает в себя внутренний импеданс самого устройства. Электри́ческий импеда́нс (ко́мплексное электри́ческое сопротивле́ние) — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала. Это позволяет снизить выходное сопротивление и уменьшить потери сигнала при подключении к входу усилителя сигнала микрофона. Ввиду наличия встроенного транзистора, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешний источник электропитания Слайд 5 принцип действия таких микрофонов основан на индукционном принципе, открытом Фарадеем в 1831 году и заключающемся в том, что если при перемещении проводника в магнитном поле он пересекает силовые линии, то в проводнике возникает электродвижущая сила (ЭДС). Когда этот проводник замыкается на внешнюю цепь, в ней под действием ЭДС появляется индукционный ток. В электродинамическом микрофоне звуковая волна воздействует на легкую диафрагму, которая начинает колебаться и приводит в движение связанный с ней проводник, помещенный в постоянное магнитное поле. При движении проводника в магнитном поле в нем индуцируется электрический ток, который затем усиливается и передается для дальнейшей обработки. В зависимости от вида проводника (звуковой катушки, то есть провода, намотанного на цилиндрический каркас, или металлической ленточки и др.) электродинамические микрофоны подразделяются на микрофоны катушечные, ленточные и другие типы (например, изодинамические). Слайд 6 Стандарты определяют два метода создания канала: подключением (interconnection) и коммутацией (cross connection). Создание канала методом подключения предусматривает наличие линии, соединяющей телекоммуникационный разъем и распределительную панель и двух гибких кабелей – абонентского и сетевого. Это самый простой и наиболее распространенный вариант построения СКС Коммутация подразумевает вариант подключения с помощью промежуточной панели, которая вместе с панелью базовых линий и коммутационными кабелями образует коммутационный пункт. Таким образом, для подключения сетевого оборудования используются две панели и два соединительных кабеля – сетевой и коммутационный. Лицевая сторона промежуточной панели оснащена стандартными гнездами RJ45, тыльная – многоканальными разъемами. Чаще всего методом коммутации подключают телефонные линии. Еще одним примером канала с коммутацией может служить решение системы мониторинга СКС LAN Sense. Говорю после слайда 6 Аббревиатура "СКС" расшифровывается как "структурированная кабельная система Принципиальной особенностью любой СКС является то, что коммутация, в отличие от электронных АТС и сетевого компьютерного оборудования, всегда производится вручную с помощью коммутационных шнуров и/или перемычек, то есть функционирование СКС принципиально не зависит от состояния электропитающей сети. Введение в состав СКС элементов электронной или электромеханической коммутации немедленно влечет за собой обязательное использование в оборудовании штатного источника электропитания. Такое решение абсолютно неоправданно на нынешнем этапе развития техники с экономической и технической точек зрения. Это обусловлено тем, что среднее количество переключений одного порта в действующей системе составляет единицы раз в год, а источник питания обладает существенно меньшей эксплуатационной надежностью по сравнению с остальными пассивными компонентами. Оборотной стороной отказа от применения штатного источника электропитания является: необходимость использования коммутационных шнуров, которые существенно ухудшают массогабаритные показатели коммутационного оборудования и требуют применения специальных мер для решения задач администрирования; невозможность введения в состав СКС штатных контроллеров, датчиков и другого аналогичного оборудования, что снижает удобство эксплуатации, увеличивает время поиска неисправности, затрудняет текущую диагностику и т.д. Известны лишь отдельные разработки, направленные на внедрение активных компонентов в некоторые подсистемы СКС, которые доведены до серийного производства. Однако они носят вспомогательный характер (опрос состояния портов, индикация, коммутация сигналов низкоскоростных приложений), не затрагивают процесс передачи информационных сигналов и не нормируются действующими и перспективными стандартами. Принципиальной особенностью любой СКС является то, что коммутация, в отличие от электронных АТС и сетевого компьютерного оборудования, всегда производится вручную с помощью коммутационных шнуров и/или перемычек, то есть функционирование СКС принципиально не зависит от состояния электропитающей сети. Введение в состав СКС элементов электронной или электромеханической коммутации немедленно влечет за собой обязательное использование в оборудовании штатного источника электропитания. Такое решение абсолютно неоправданно на нынешнем этапе развития техники с экономической и технической точек зрения. Это обусловлено тем, что среднее количество переключений одного порта в действующей системе составляет единицы раз в год, а источник питания обладает существенно меньшей эксплуатационной надежностью по сравнению с остальными пассивными компонентами. Оборотной стороной отказа от применения штатного источника электропитания является: необходимость использования коммутационных шнуров, которые существенно ухудшают массогабаритные показатели коммутационного оборудования и требуют применения специальных мер для решения задач администрирования; невозможность введения в состав СКС штатных контроллеров, датчиков и другого аналогичного оборудования, что снижает удобство эксплуатации, увеличивает время поиска неисправности, затрудняет текущую диагностику и т.д. Известны лишь отдельные разработки, направленные на внедрение активных компонентов в некоторые подсистемы СКС, которые доведены до серийного производства. Однако они носят вспомогательный характер (опрос состояния портов, индикация, коммутация сигналов низкоскоростных приложений), не затрагивают процесс передачи информационных сигналов и не нормируются действующими и перспективными стандартами. Основные признаки СКС: избыточность, структуризация и универсальность. Избыточность.Принцип избыточности предполагает, что размещение розеток определяется не размещением сотрудников и офисной мебели, а площадью и топологией помещений, поэтому при перепланировке легко производить перемещение сотрудников и организовывать новые места. При этом не происходит длительной остановки работы всего офиса, т.к. изменений в кабельной системе не требуется. Под избыточностью понимается введение в состав СКС дополнительных информационных розеток, количество и размещение которых определяются площадью и топологией рабочих помещений, а не планами размещения сотрудников и расположения офисной мебели. Это позволяет легко организовывать новые рабочие места, а также выполнять перемещения сотрудников и оборудования. Применение принципа избыточности обеспечивает возможность очень быстрой адаптации кабельной системы под конкретные производственные потребности и позволяет не останавливать работу офиса или его части при проведении каких-либо организационных и технических изменений. Поскольку продолжительность эксплуатации СКС в несколько раз превышает аналогичный показатель для остальных компонентов информационной инфраструктуры здания, этот принцип особенно важен. Структуризация.Структуризация - это разбиение кабельной инфраструктуры на отдельные, независимые сегменты (подсистемы), выполняющие определенные функции и снабженные стандартизованными интерфейсами. Средствами переключения создаются необходимые структуры. Структуризация предполагает разбиение кабельной проводки и ее аксессуаров на отдельные части или подсистемы, каждая из которых выполняет строго определенные функции и снабжена стандартизованным интерфейсом для связи с другими подсистемами и сетевым оборудованием. В состав любой подсистемы обязательно включается развитый набор средств переключения, что обеспечивает ее высокую гибкость и позволяет создавать сложные структуры с конфигурацией, легко и быстро меняемой и адаптируемой под потребности конкретных приложений. При построении системы используется обобщенный подход без привязки к какому-либо конкретному виду кабеля или коммутационного оборудования. Это дает возможность без каких-либо сложностей на любом уровне одинаково легко применять как оптические, так и электрические технологии передачи сигналов, выбор которых полностью определяется местными условиями и максимальной технико-экономической эффективностью данного конкретного проекта. Универсальность.СКС не привязывается к конкретным сетевым технологиям, а создается с заданными техническими характеристиками, определенными в стандартах. Соответственно, систему можно использовать для передачи данных разнообразных приложений. СКС проектируется без привязки к определенному типу кабеля или оборудования. Универсальность кабельной системы проявляется в том, что она изначально строится не для обеспечения работы какой-либо конкретной, пусть и весьма распространенной сетевой технологии, а создается на принципах открытой архитектуры с заданным и зафиксированным в стандартах набором основных технических характеристик. При этом в нормативных документах задаются параметры как электрических и оптических кабельных трасс отдельных подсистем, так и их интерфейсов. Это позволяет обеспечить возможность использования кабельной системы для передачи сигналов самых разнообразных приложений в сочетании с сокращением количества типов кабелей до двух: симметричного (из витых пар) и волоконно-оптического. Технический уровень элементной базы, используемой для создания СКС, задается стандартом таким образом, чтобы обеспечить продолжительность эксплуатации кабельной системы минимум в 10 лет |