Главная страница

Жидкостные ракетные двигатели. В. Г. Попов, Н. Л. Ярославцев К65 Жидкостные


Скачать 4.57 Mb.
НазваниеВ. Г. Попов, Н. Л. Ярославцев К65 Жидкостные
АнкорЖидкостные ракетные двигатели.doc
Дата19.05.2017
Размер4.57 Mb.
Формат файлаdoc
Имя файлаЖидкостные ракетные двигатели.doc
ТипДокументы
#7951
КатегорияПромышленность. Энергетика
страница12 из 16
1   ...   8   9   10   11   12   13   14   15   16

Рис.77

Конструкция дисков турбин ТНА

Особенно высокие требования по точности обработки предъявляются к сопрягаемым размерам — посадочному отверстию в ступице или посадочным пояскам и к пазам для крепления лопаток. Посадочные пояски и отверстия в ступице обычно выполняются по 2-му классу точности. Допуски на размеры паза для крепления лопаток— 0,01—0,03 мм. Допускаемое биение наружных поверхностей посадочных мест — 0,03—0,06 мм.

Передача крутящего момента от диска к валу осуществляется болтами или штифтами, вставляемыми в отверстия Г (см. рис.77,а) или шлицами Е (см. рис.77, б). Иногда вал вытачивается заодно с фланцем, а диск турбины прива­ривается к фланцу вала, как это изображено на рис.77, в. При такой конструк­ции диска достигается экономия дорогостоящих жаропрочных сплавов, так как вал изготовляется из более дешевых сталей.

При конструировании дисков турбин очень большое внимание уделя­ется рациональному способу крепления лопаток с учетом конструктивной прочности и технологичности конструкции.

Наибольшая конструктивная прочность при минимальном весе диска достигается в том случае, когда лопатки выполнены за одно целое с диском. У таких дисков обод получается наиболее легким. Однако технология их из­готовления сложна и сопряженна с большой затратой труда. Кроме того, каче­ство обработки профиля лопаток выше, если лопатки изготовляются отдельно от ротора. Повышенная шероховатость или несоответствие профиля лопатки расчетному снижает коэффициент полезного действия турбины. Все эти факто­ры подробно анализируются и в каждой конкретной конструкции ТНА на­ходится наиболее рациональное решение.

Несмотря на кажущиеся выгоды получения заготовок дисков турбин за одно целое с лопатками в реальных условиях иногда целесообразнее изготов­лять лопатки отдельно с последующим соединением их с диском с помощью замков или сваркой.

Лопатка газовой турбины состоит из двух основных конструктивных элементов — пера и корневой части с замком. Перо—рабочий элемент лопат­ки, а корневая часть, или замок, служит для соединения пера с диском турбины. Перо лопатки имеет сложную форму, определяемую газодинамическим расче­том. Вогнутую сторону пера называют корытом, а выпуклую—спинкой. Про­фили корыта и спинки соединяются, образуя кромки пера: переднюю, или входную, кромку со стороны входа газа на лопатку и заднюю, или выходную, кромку. На практике широкое распространение получили три характерных ти­па лопаток газовых турбин ТНА:

  • лопатка, изготовленная отдельно и соединяемая с диском турбины сваркой или замком;

  • лопатки открытого типа, выполненные за одно целое с диском тур­бины;

  • лопатки, выполненные за одно целое с диском турбины, соединен­ные сверху бандажным кольцом.

У каждого из этих типов лопаток свои достоинства и недостатки как эксплуатационного, так и технологического характера.

Лопатки первого типа изготовляются отдельно от диска и могут быть выполнены более точно и с лучшей чистотой поверхности, чем лопатки ос­тальных типов.

На каждую турбину идет большое количество лопаток, что позволяет даже при мелкосерийном производстве ТНА организовать поточное изготовле­ние лопаток с применением специального оборудования и высокопроизводи­тельной оснастки. Однако необходимость крепления отдельно выполненных лопаток к диску с помощью замков усложняет технологический процесс и утя­желяет диск турбины. Этот недостаток в значительной мере устраняется при соединении лопаток с диском сваркой.

Лопатки второго типа наиболее рациональны конструктивно, так как не требуют крепления. Однако такие лопатки нельзя изготовить обычной меха­нической обработкой. Для выбирания металла между лопатками приходится применять электроэрозионный, ультразвуковой или другие методы, по произ­водительности значительно уступающие обычной механической обработке. Кроме того, изготовление такого типа лопаток требует весьма точного соблю­дения технологического процесса, так как наличие одной забракованной лопат­ки ведет к браку всего диска турбины. Лопатки второго и третьего типа не мо­гут быть выполнены из металла или сплава, отличного от металла диска (так как составляют с диском одно целое), что не всегда рационально, а иногда даже недопустимо.

Лопатки третьего типа так же рациональны с конструктивной точки зрения, как и лопатки второго типа. Наличие бандажа, выполненного за одно целое с лопатками, даже улучшает их характеристики, но технология изго­товления таких лопаток не позволяет получить точные геометрические размеры профиля лопаток. Отливка по выплавляемым моделям дает значительные по­грешности, а обработка закрытых профилей лопаток затруднена.

Технологический процесс изготовления каждого из трех типов лопаток имеет свои особенности. Большое влияние на технологический процесс оказы­вает также материал лопаток.

Лопатки газовых турбин работают в тяжелых условиях—при высокой температуре и высоких напряжениях от центробежных сил. Материал лопаток должен обладать хорошей жаропрочностью и вместе с тем удовлетворительно обрабатываться резанием и давлением. Материал для литых лопаток должен обладать высокими литейными свойствами. Материал приварных лопаток дол­жен хорошо свариваться с материалом диска. Для изготовления лопаток турби­ны применяются следующие стали и сплавы: 1Х18Н9Т, ЗОХГСА, ЭИ69, ВЛ7-20 и другие.

Для кратковременной работы при не очень высоких температурах мо­гут применяться сплавы на алюминиевой основе типа АК4.

Корпусные детали турбонасосных агрегатов можно разделить на следующие основные группы:

  1. Корпусы насосов.

  2. Корпусы турбин.

  3. Выхлопные патрубки и коллекторы.

  4. Крышки.


Рис.78

Корпусные детали ТНА

Большинство корпусных деталей ТНА, рис.78, имеет сложную форму, образованную криволинейными, плоскими и цилиндрическими поверхностями. Криволинейные поверхности, образующие улитки, полости, выемки, не под­вергаются механической обработке, но зачищаются для удаления неровностей поверхности. Некоторые из таких поверхностей обозначены буквой Я.



Для установки подшипников, уплотнений и других деталей, примы­кающих к валам турбин и насосов, в корпусах делаются расточки, выточки, посадочные пояски. Эти посадочные места механически обрабатываются с вы­сокой точностью—по 2 или 1 -му классу. Взаимное биение посадочных поверх­ностей допускается в пределах 0,03-0,05 мм, а непараллельность торцев — 0,03-0,08 мм. С такой же высокой точностью обрабатываются места стыков корпусных деталей друг с другом по плоскостям разъема П. Особенно жесткие требования к посадочным и стыковочным местам предъявляются в конструк­циях ТНА, имеющих общий вал турбины и насосов.

Сочетание в одной детали необработанных поверхностей, имеющих относительно грубые допуски, с поверхностями, обработанными с высокой точностью, — одна из характерных особенностей корпусных деталей.

Материал для корпусов выбирается исходя из условий их работы, воз­можно минимального веса и технологичности конструкции. Корпусы насосов изготовляют чаще всего из алюминиевых литейных сплавов типа АЛ4, обла­дающих высокими литейными свойствами при достаточной прочности.

Корпусы турбин также предпочтительно изготовлять из сплавов типа АЛ4, если это допускается по температурным условиям. При высокой темпера­туре газов корпусы турбин изготовляют из жаропрочных нержавеющих сталей типа 1Х18Н9Т. Корпусы насосов для перекачивания агрессивных жидкостей изготовляют из титановых сплавов, обладающих высокой коррозионной стой­костью. Иногда по условиям минимального веса и конструктивным соображе­ниям корпусные детали изготовляются штамповкой из листа с последующей сваркой. Для сварных штампованных корпусов применяют сплавы ЭИ606, ЭИ654, сталь 1Х18Н9Т и другие.

Сварные корпусы из листовых материалов, как правило, дешевле и лег­че литых, поэтому они находят широкое применение.



Рис.79

Сварной корпус турбины:

1-фланец; 2— коллектор; 3—кольцо

На рис.79 показан пример изготовления сварного корпуса турбины с выхлопным коллектором.

Корпус расчленен на три элементарные детали. Средняя часть — кол­лектор 2 изготовляется штамповкой из тонкого листа, а фланец 1 и посадочное кольцо 3 получены токарной обработкой. Элементарные детали соединены двумя кольцевыми сварными швами С. Сварка ведется в специальном приспо­соблении, детали поворачиваются сварочным манипулятором.

8.12. Классификация турбин

По различным признакам турбины разделяют на активные и реак­тивные, осевые, радиальные и тангенциальные, одноступенчатые и мно­гоступенчатые. Кроме того, отличают турбины со ступенями скорости и ступе­нями давления, парциальные и непарциальные, одновальные и двухвальные.

Разделение на активные и реактивные турбины производится по спо­собу распределения перепадов давления в ступени турбины.



В активных турбинах весь перепад давления, приходящийся на сту­пень, срабатывается в сопловом аппарате, а на рабочих лопатках колеса турби­ны перепад давлений отсутствует. В межлопаточном канале колеса поток пово­рачивается и на лопатки действует сила реакции. Таким образом, часть энергии газов передается ротору и абсолютная скорость газа уменьшается. Если пре­небречь потерями, относительная скорость w остается неизменной, т. е. w1= w2-В реактивных турбинах перепад давления срабатывается в сопловом аппарате и на рабочих лопатках. Вследствие расширения газа на рабочих лопатках отно­сительная скорость w возрастает, т. е. w2>wi, рис.80.



Рис.80

Элементарная схема и треугольники скоростей турбины:

а—активной; б—реактивной

130

Величина располагаемой работы L0, т. е. максимально возможной ра­боты турбины без потерь, определяется адиабатическим перепадом тепла hад (теплоперепадом) от параметров газа в заторможенном состоянии на входе в турбину ( Рвх; Твх) до давления на выходе Рвых.:



где: R, k - показатель адиабаты и газовая постоянная рабочего тела турби­ны, соответственно;

Твх и Рвх - заторможенные значения температуры и давления газа перед тур­биной, соответственно; Рвых - давление газа за турбиной.

Отношение адиабатического перепада тепла, срабатываемого на рабо­чих лопатках, к полному перепаду тепла на ступени называется степенью реак­тивности:







Классификация турбин на осевые, радиальные и тангенциальные про­изводится по направлению газового потока, рис.81.










Рис.81

Типы турбин:

- осевая; б—радиальная центростремительная; в—тангенциальная: 7—сопловый аппарат, 2—лопатки

Осевыми турбинами называются турбины, в которых направление по­тока в меридиональном сечении параллельно (или почти параллельно) оси тур­бины.

Радиальными называются турбины, в которых направление потока в меридиональном сечении перпендикулярно оси турбины. В зависимости от направления потока газа различают центростремительные (направление потока от периферии к центру) и центробежные (направление потока от центра к пе-

риферии) турбины. В некоторых случаях применение радиальной турбины уп­рощает компоновку ТНА

Тангенциальными называются турбины, в которых газ движется по ок­ружности в плоскости, перпендикулярной к оси турбины, и за счет трения ув­лекает за собой лопатки турбины.

По числу ступеней различают одноступенчатые и многоступенчатые турбины, рис.82.



Рис.82

Многоступенчатые турбины:

а—со ступенями скорости; б— со ступенями давления;

в—с поворотом газа

В многоступенчатой турбине газ после выхода из лопаток колеса попа­дает в спрямляющий (сопловой) аппарат и снова поступает на колесо во второй ряд рабочих лопаток. Количество ступеней может равняться двум, трем и бо­лее. Применение многоступенчатых турбин позволяет использовать больший теплоперепад, хотя установка ступеней связана с дополнительными гидравли­ческими потерями, вследствие чего максимальное значение КПД многоступен­чатой турбины меньше, чем КПД одноступенчатой. Применение более двух ступеней дает незначительный выигрыш в работе.

Различают многоступенчатые турбины со ступенями скорости и со ступенями давления. В первых - перепад давлений срабатывается в сопло­вом аппарате первой ступени и полученная кинетическая энергия посте­пенно используется на других ступенях. В турбине со ступенями давления в каждой ступени срабатывает определенный перепад давления. Турбины со сту­пенями скорости имеют меньший КПД, по сравнению с турбинами со ступеня­ми давления, однако, при их применении:

- требуется меньшее количество ступеней для срабатывания задан­
ного теплоперепада (при одинаковой окружной скорости)'.

  • более существенно снижается температура газа, поступающего в последующие ступени;

  • значительно уменьшаются осевые силы.

В целом турбины со ступенями скорости проще и в сравнительно не­больших ЖРД целесообразны. В двигателях больших тяг с выбросом генера­торного газа в окружающую среду, когда эффективность ТНА играет сущест­венную роль, возможно применение турбин со ступенями давления.

Разновидностью многоступенчатой турбины со ступенями скорости является турбина с поворотом подвода газа В этих турбинах газ из рабочих лопаток колеса поступает в поворотный канал, где изменяется направление потока, и повторно подводится к рабочему колесу. Такая турбина имеет большие потери, но зато рабочее колесо имеет один венец. Известно примене­ние турбины с поворотом потока в ЖРД «Вальтер».



По степени использования проходного сечения соплового аппарата различают парциальные и непарциальные турбины Парциальными называют­ся турбины, в которых сопловые каналы имеются только на части окружности. Отношение рабочей дуги соплового аппарата ар ко всей окружности называ­ется степенью парциальности:



Парциальность вызывает дополнительные потери. В ряде случаев улучшение КПД турбины за счет увеличения и и за счет увеличена длины ло­паток получается большим, чем падение его вследствие потерь на парциаль­ность. Кроме того, при заданной температуре газа температура лопаток парци­альной турбины ниже.

По числу валов различают одновальные и двухвальные турбины. Схе­ма двухвальной турбины показана на рис.83.

Применение двухвальной турбины в ТНА ЖРД может оказаться целе­сообразным из-за значительной разницы в максимально допустимых числах оборотов насосов горючего и окислителя. Однако применение двухвальных турбин в ТНА может привести к усложнению запуска и регулирования двига­теля, а также и усложняет конструкцию ТНА в целом.

Специфика условий работы турбины в ТНА и требования к ТНА, как важнейшему агрегату двигательной установки, определяют типы турбин, кото­рые рационально использовать при различных схемах двигательных установок ЖРД. В ТНА жидкостных ракетных двигателей применяются главным образом осевые активные турбины. Эти турбины конструктивно проще и достаточно надежны в работе. Для ТНА жидкостных ракетных двигателей, работающих по открытой схеме (с выбросом генераторного газа в окружающую среду),







Рис.83

Двухвальная турбина

характерно применение парциальных активных турбин. Дело в том, что при открытой схеме для уменьшения потерь компонентов на привод ТНА стремят­ся уменьшить расход рабочего тела на турбину (это достигается увеличением перепада давления на турбине= Рвх / Рвых = 15 - 60, за счет снижения дав­ления за турбиной; однако, Рвых,min > 1,4 Рн). Вследствие малых расходов тур­бину целесообразно выполнять парциальной. Наличие же парциальности обу­словливает применение активных турбин, так как в реактивных турбинах вследствие перепада давлений на лопатках колеса возникли бы большие потери из-за перетекания газа в области перед рабочими лопатками, где отсутствуют окна для подачи рабочего тела.

В ТНА двигателей открытых схем используют как одно-, так и двух­ступенчатые турбины, чаще со ступенями скорости.

В ТНА жидкостных ракетных двигателей с замкнутой схемой (с под­водом генераторного газа в головку камеры ЖРД) в основном используются осевые одноступенчатые, низконапорные (пт = 1,15-1,8) турбины с большим расходом рабочего тела. Применение нескольких ступеней при этом нецелесо­образно из-за малого срабатываемого теплоперепада. При замкнутой схеме наряду с активными турбинами могут использоваться и турбины с небольшой реактивностью. Из удобства компоновки при замкнутой схеме возможно при­менение радиальных турбин.

Турбины для первоначальной раскрутки ТНА, работающие от пиро-стартера, обычно выполняют осевыми, одноступенчатыми, парциальными.

8.13. Основные параметры турбины

1. Мощность турбины

Nt= Nh,o +NH.r +Nвсп. ,

где: NHО, Nht , Nbcп. - мощности насосов окислителя, горючего и вспомогатель-ных агрегатов, соответственно.

2. Перепад давления на турбине

пт = Рвх / Рвых .

3. Температура газа перед турбиной

Величина Тг, как правило, определяется жаропрочностью материала лопаток, Тг= 1100-1500 К.

4. Число оборотов вала турбины

n = 60 u / (п Дср), где:

и - окружная скорость рабочих лопаток, м/с; Дср - средний диаметр рабочих лопаток турбины.

При одновальной компановки ТНА число оборотов рабочего колеса турбины определяется исходя из условия безкавитационной работы насосов, а при многовальной - из условия обеспечения максимального коэффициента по­лезного действия турбины.

5. Эффективный коэффициент полезного действия турбины



где:

- потери на трение в сопловом аппарате;

- потери на перетекание рабочего тела через радиальный зазор, образован­
ный торцами рабочих лопаток и корпусом турбины;

- потери на трение и удар о диск турбины;

- механические потери в подшипниках и лабиринтных уплотнениях;

- потери с выходной скорость, т.е. потери обусловленные выбросом газо­
вого потока в окружающую среду. Данный вид потерь характерен только для
ЖРД без дожигания генераторного газа;

-учитывает вентилляционные потери, обусловленные перетеканием рабо-

чего тела из зоны повышенного давления за рабочими лопатками в зону пони­женного после соплового аппарата на тех участках соплового аппарата, где отсутствуют выходные сечения сопел.

8.14. Требования, предъявляемые к газогенераторам

Величина тяги ЖРД, как известно, является линейной функцией се­кундного расхода топлива. Секундный расход топлива для каждого конкретно­го двигателя с насосной системой подачи компонентов зависит от мощности, развиваемой турбиной. Мощность турбины полностью определяется секунд­ным расходом и параметрами рабочего тела на входе в турбину, т. е. на выходе из газогенератора. Поэтому газогенератор является устройством, задающим режим работы всей двигательной установки. Это обстоятельство и определяет особые требования к данному звену системы топливоподачи (помимо общих требований, предъявляемых ко всем агрегатам ЖРД, вне зависимости от спе­цифики их работы). Эти требования сводятся к следующему.

1. Высокая стабильность работы.Это значит, что газогенератор на всех режимах работы двигателя должен возможно точнее обеспечивать задан­ный секундный расход газа и при этом значения параметров газа (состав, дав­ление, температура и др.) не должны выходить за определенные (допустимые) пределы. Чем стабильнее работа газогенератора, тем меньшие нагрузки испы­тывают в полете системы управления работой двигателя, а это повышает на­дежность двигателя и точность стрельбы.

Особенно важна стабильность работы газогенератора для ракет с нере­гулируемыми ЖРД и ракет, управление дальностью полета которых осуществ­ляется только по скорости полета в конце активного участка траектории. В по­следнем случае отклонение координат конца активного участка траектории, вызванное отклонением тяги двигателя от расчетного значения, вследствие не­стабильной работы газогенератора, целиком перейдет в отклонение точки па­дения ракеты от цели.

2.Простота управления рабочим процессом в широком диапазоне из­
менения его параметров.Это требование также обусловлено регулирующим
воздействием газогенератора на двигатель и необходимостью изменения режи­
ма работы двигателя в процессе одного запуска (при регулировании тяги во
время старта и в полете, при переходе с главной ступени тяги на конечную и т.

д.).

3.Высокая работоспособность генераторного газа,обусловливающая
либо минимальную затрату энергии (и соответственно минимальный расход
топлива) на привод ТНА, либо повышение мощности ТНА. Это требование
выдвигается в связи с тем, что удельный импульс двигателя определяется от­
ношением тяги ко всему секундному расходу отбрасываемой массы. В понятие
же «отбрасываемая масса» входят как продукты сгорания топлива в камере, так
и отработанный после турбины газ. Для ЖРД, у которых этот газ выбрасывает­
ся в атмосферу и развивает удельный импульс меньший, чем продукты сгора­
ния топлива, истекающие из камеры двигателя, решающим условием повыше­
ния экономичности двигателя является уменьшение расхода топлива на привод
ТНА. Для ЖРД с дожиганием генераторного газа главное—увеличение мощно­
сти ТНА, так как это позволяет увеличить давление в камере и при заданном
значении давления на срезе сопла повысить степень расширения отбрасывав-

мых продуктов сгорания, т. е. увеличить термический КПД камеры. Уменьше-ние расхода топлива на привод ТНА и увеличение мощности ТНА зависят от количества энергии, отдаваемой турбине одним килограммом рабочего тела. Эга энергия равна, как известно, произведению относительного эффективного КПД турбины на располагаемый адиабатический теплоперепад.

8.15. Классификация газогенераторов

Основу классификации газогенераторов составляет способ получе­ния генераторного газа. В настоящее время распространены три способа газо­генерации.

1. Разложение(с помощью катализаторов или без них) вещества, спо­собного после внешнего инициирующего воздействия перейти к дальнейшему устойчивому самопроизвольному распаду, сопровождающемуся выделением значительного количества тепловой энергии и газообразных продуктов разло­жения. Таким веществом может быть как компонент основного топлива двига­теля, так и специальное средство газогенерации, запасенное только для этой цели на борту ракеты. Газогенераторы, в которых реализуется этот процесс, называются однокомпонентными. В дальнейшем их различают главным обра­зом по виду разлагаемого вещества (перекисеводородные, гидразиновые, на твердом топливе и т.п.).

2. Сжигание жидкого топлива, состоящего из двух компонентов. Луч­ше всего использовать для этой цели основное топливо двигателя, так как при этом существенно упрощается его подача в газогенератор и улучшаются усло­вия эксплуатации ракеты. Газогенераторы этого типа называются двухкомпо-нентными.

3. Испарение жидкостив тракте охлаждения камеры двигателя. При этом способе получения рабочего тела турбины одновременно решается и за­дача охлаждении стенок камеры двигателя. Газогенераторы этого типа назы­вают парогенераторами, а схемы двигателей—безгенераторными. Схемы паро­генераторов подразделяются на циркуляционные и со сменой рабочего тела. В первых произвольное рабочее тело (например, вода) циркулирует по замкнуто­му контуру «тракт охлаждения камеры — турбина — конденсатор — насос — тракт охлаждения камеры», превращаясь попеременно то в пар, то в жидкость в различных его частях. В схемах со сменой рабочего тела эта циркуляция отсут­ствует. Рабочее тело после турбины выводится из цикла. Очевидно, что непо­средственный выброс отработавшего газа в атмосферу заметно ухудшил бы экономичность двигателя, так как удельная тяга выхлопных патрубков всегда меньше удельной тяги камеры двигателя. Чтобы устранить эти потери, в тракт охлаждения камеры обычно посылается один из компонентов топлива. После испарения и срабатывания в турбине он направляется в камеру двигателя, где и сжигается вместе со вторым компонентом. Таким образом, безгенераторные двигатели выполняются по схеме с дожиганием рабочего тела турбины.

По конструкции системы газогенерации значительно, отличаются друг от друга, но тем не менее в каждой из них можно выделить следующие общие основные элементы:

  • газогенератор;

  • топливоподающие устройства;

  • автоматику.

В газогенераторе (иногда называемом реактором) непосредственно об­разуется рабочее тело турбины - газ или пар заданных параметров. Топливопо­дающие устройства обеспечивают поступление средств газогенерации (исход­ных веществ) в реактор. Автоматика осуществляет регулирование рабочего процесса, а также запуск и выключение газогенератора. Иногда (например, при работе на основном топливе) система газогенерации не имеет самостоятельных топливоподающих устройств. В этом случае питание газогенератора топливом обеспечивается системой подачи двигателя. В ЖРД нашли применение следующие типы газогенераторов (ГТ):

  • твердотопливный (ТГГ);

  • гибридный (ТГГ);

  • однокомпонентный жидкостный (однокомпонетный ЖГГ);

  • двухкомпонентный жидкостный (двухкомпонентный ЖГГ);

  • испарительный жидкостный (испарительный ЖГГ);

  • аккумулятор сжатого газа (АСГ).
1   ...   8   9   10   11   12   13   14   15   16


написать администратору сайта