Главная страница
Навигация по странице:

  • 9. Системы управления ЖРД

  • Жидкостные ракетные двигатели. В. Г. Попов, Н. Л. Ярославцев К65 Жидкостные


    Скачать 4.57 Mb.
    НазваниеВ. Г. Попов, Н. Л. Ярославцев К65 Жидкостные
    АнкорЖидкостные ракетные двигатели.doc
    Дата19.05.2017
    Размер4.57 Mb.
    Формат файлаdoc
    Имя файлаЖидкостные ракетные двигатели.doc
    ТипДокументы
    #7951
    КатегорияПромышленность. Энергетика
    страница14 из 16
    1   ...   8   9   10   11   12   13   14   15   16

    Аккумулятор сжатого газа. АСГ, являясь источником газа, может рассматриваться как ГГ, отличающийся той особенностью, что газ в нем не вырабатывается во время работы ЖРД, а запасен заранее и расходуется по мере необходимости. В настоящем разделе рассмотрена методика расчета указанных ГГ. В качестве исходных данных для расчета ГГ должны быть заданы вещест­ва, служащие для получения газа; давление в топливных баках; температура газа на выходе из ГГ; секундный расход газа и допуски на его изменение; время работы и требования, предъявляемые к физико-химическим свойствам газа: кислородный баланс, наличие твердой или жидкой фазы степень равновесности химического состава газа на выходе ГГ и т. д.

    9. Системы управления ЖРД

    9.1. Система запуска ЖРД

    Запуск двигательной установки является наиболее ответственным ди­намическим режимом её работы, во время которого параметры рабочего про-

    десca изеняются в широких пределах от нуля до номинальных значений; ем это изменение происходит очень быстро, вследствие чего трудно, а иногда невозможно воздействовать на процесс запуска. Во время запуска на конструкцию двигательной установки и ракеты воздействуют различные дина­мические нагрузки, к которым относятся тепловой удар, давление и ускорение. Этим можно объяснить тот факт, что наибольшее количество отказов и аварий двигательной установки появляется во время запуска.

    Весь процесс запуска условно можно разделить на два периода:

    • воспламенение топлива, поданного в камеру сгорания и газогенератор;

    • выход двигательной установки на режим номинальных параметров.

    Для безаварийного запуска необходимо обеспечить надежное воспла­менение топлива, а также такое изменение параметров (в основном-давления в камере сгорания и газогенераторе) во времени, которое не приводило бы к большим перегрузкам, действующим на конструкцию, и взрывам. Процесс за­пуска начинается с открытия топливных клапанов. Компоненты топлива под действием сил давления насосов или гидростатических сил подаются в камеру двигателя с большими скоростями и в значительных количествах. Если не от­работано воспламенение, то может произойти выброс компонентов топлива из камеры без воспламенения или, наоборот, воспламенение со взрывом. По этому в камере двигателя должен создаваться мощный источник тепла, способный зажечь движущееся топливо.

    Температура воспламенения паров топлива, применяемого в ЖРД обычно не менее 300 °С. Такая температура может достигаться различными методами. В том случае, когда применяются самовоспламеняющиеся компо­ненты топлива, не требуется дополнительных источников тепла.

    Самовоспламеняющиеся компоненты топлива при обычных темпера­турах реагируют при контакте в жидкой фазе с выделением тепла, в результате чего обеспечивается разогрев и воспламенение. Такой вид воспламенения на­зывается химическим.

    Несамовоспламеняющиеся компоненты топлива требуют для испа­рения и воспламенения подвода тепла от внешнего источника. Воспламене­ние топлива с внешним подводом тепла называется термическим.

    Термическое воспламенение характеризуется минимальной температу­рой, при которой развивается процесс воспламенения, и периодом задержки.

    Период задержки воспламенения определяется временем от момента впрыска топлива в зону горения до момента появления пламени.

    Для надежности запуска ЖРД в первую очередь должно быть га­рантировано воспламенение топлива при минимально возможном времени вы­хода на режим. Сокращение времени выхода на режим позволяет уменьшить необходимый запас топлива, а, следовательно, уменьшить стартовый вес, что особенно важно для космических и баллистических ракет.

    В некоторых случаях, кроме того, должна быть обеспечена возмож­ность многократного запуска, запуска двигателя в высотных условиях или в условиях космического полета. Специфические требования к организации за­пуска возникают при запуске камер двигателей больших тяг.

    В зависимости от характера выхода на режим принято различать плав­ный, ступенчатый и пушечный запуски.

    Важными характеристиками запуска являются скорость нарастания давления в камере при запуске (dP/dt) и величина заброса (или пика) давления, т. е. величина отношения наибольшего давления в камере при запуске к номи­нальному.

    Величины скорости нарастания давления и заброса давления ха­рактеризуют жесткость запуска. Чем больше эти величины, тем более жестким является запуск. На рис.87. приведены типичные графики изменения давления в камере сгорания при запуске. Запуск, протекающий в соответствии с кривой 3, очевидно, является наиболее жестким.

    При больших значения dP/dr и большом забросе давления появляется опасность разрушения и даже взрыва камеры, как вследствие потери ее проч­ности, так и в результате возникновения детонационного горения топлива.

    Основное влияние на жесткость запуска оказывает время задержки воспламенения топлива t3. Очевидно, чем больше значение т3, тем больше ус­пеет накопиться топлива до начала воспламенения и тем больше будет заброс даатения.



    Рис87

    Изменение давления в камере при запуске:

    1 - плавный запуск; 2 - ступенчатый запуск; 3 - жесткий запуск;

    t, - время задержки воспламенения

    При плавном запуске воспламенение происходит при небольшом рас­ходе топлива и с последующим сравнительно плавным нарастанием расхода топлива. Плавный запуск характерен для ЖРД малых и средних тяг с турбона-сосной системой подачи. При этом плавность нарастания расхода топлива обеспечивается за счет инерции ТНА. Продолжительность запуска определяет­ся в основном временем выхода ТНА на номинальный режим («раскруткой ТНА»).

    Ступенчатый запуск характерен введением промежуточной (или пред­варительной) ступени работы ЖРД и иногда целесообразен при запуске двига­телей больших тяг. Необходимость введения промежуточной ступени обуслов-

    лена тем, что с ростом тяги, а, следовательно, и мощности ТНА время, расхо­дуемое на раскрутку ТНА (инерционность ТНА) уменьшается. В результате влияние инерционности ТНА на скорость нарастания давления становится ни­чтожным, так что запуск приходится смягчать введением промежуточного ре­жима.

    При запуске ЖРД, работающих на несамовоспламеняющихся ком­понентах, введение предварительной ступени обеспечивает прогрев камеры и образование надежного факела.

    Пушечным называют запуск, при котором сразу подается полный расход топлива. В чистом виде пушечный запуск не применяется, так как при этом получился бы очень большой заброс давления в камере, поэтому в системе подачи или в головке двигателя всегда устанавливаются устройства, смягчающие запуск. Запуски, близкие к пушечному, возможны при исполь­зовании вытеснительных систем подачи.

    9.2. Влияние условий запуска двигателя

    Начальная температура топлива. Изменение начальной температуры приводит к изменению химической активности топлива, а также к изменению физических свойств, влияющих на перемешивание топлива при впрыске (вяз­кость, поверхностное натяжение). С уменьшением начальной температуры t3 увеличивается. Так, например, для топлива, состоящего из азотной кислоты и смеси фурфурилового спирта с анилином, при понижении температуры с -10 до -30 °С время задержки воспламенения увеличивается с 0,015 до 0,040 сек, т. е. более чем в два раза.

    Начальное давление в камере сгорания. Вопрос о влиянии начального давления в камере на воспламенение очень важен при организации запуска двигателя в высотных условиях. Понижение давления приводит к увеличению t3 и, как следствие, к увеличению заброса давления при запуске. Некоторые самовоспламеняющиеся топлива при большом уменьшении давления могут вообще утратить способность к самовоспламенению. Такие условия могут, в частности, возникнуть при запуске двигателя в космосе, где давление окру­жающей среды равно нулю. Однако, в таких случаях топливо, поступающее в камеру с давлением близким к нулю, оказывается в перегретом состоянии. Про­исходит очень быстрая возгонка топлива и за счет образовавшихся паров дав­ление в камере сгорания повышается.

    Состав топлива. На величину t3влияет как изменение соотношения компонентов топлива, так и наличие различных, иногда неизбежных (напри­мер, вода), а иногда специально вводимых разбавителей или добавок.

    Наименьшее значение t3 ряда топлив не соответствует стехиометриче-скому соотношению.










    Рис.88

    Влияние состава топлива (а) и опережения впрыска на(б)

    Так, например, для топлива «азотная кислота + 50% ксилидина и 50% фурфурилового спирта» изменение t3при изменении коэффициента избытка окислителяпроисходит, как показано на рис. а и минимальное значение соответствует =1,1.

    Аналогичные графики можно получить и для других топлив. В каждом случае наименьшему значениюбудет соответствовать свое а.

    Различные добавки в топливе могут увеличивать или уменьшать Так, например, увеличение содержания воды в азотной кислоте приводит к росту t3.

    Опережение подачи одного из компонентов. В ЖРД трудно обеспе­чить одновременную подачу окислителя и горючего, запаздывание же одного из них может привести к увеличению, а иногда к уменьшениюТак, из гра­фика измененияв зависимости от опережения подачи t для топлива «азотная кислота + фурфуриловый спирт», рис.88 б, видно, что для данного топлива опережение подачи окислителя уменьшаетт. е. улучшает запуск. Величина рационального опережения подачи того или иного компонента зависит от со­става топлива, а также от конструкции головки, так что для каждого топлива и конструкции головки имеется свой наиболее целесообразный порядок подачи компонентов.

    Иногда при выборе опережения подачи горючего или окислителя учи­тывают также, что при догорании несгоревшей в камере части горючего за со­плом двигателя образуется мощный факел.





    Прочие влияния. На t3и запуск двигателя, кроме указанных основных факторов, оказывают влияние также физические свойства топлива, перепад давления на форсунках dРФ (увеличение dРФ обычно уменьшает), форма и объем камеры, количество подаваемого компонента (увеличение количества подаваемого топлива часто приводит к уменьшению), многократность запус­ка и т. д.

    149

    9.3. Способы воспламенения горючих смесей

    В классификации задач, возлагаемых на системы управления ДУ, зада­ча воспламенения горючих смесей отнесена к обеспечению нестационарного процесса запуска двигателя и решается с помощью автономных систем воспла­менения топлив в камерах и газогенераторах ЖРД.

    Под системой воспламенения топлив предусматривается полный цикл мероприятий по организации не только начального этапа воспламенения ком­понентов топлива, но также и весь цикл обеспечения этого процесса без ано­мальных явлений (срывов горения, незапусков, пульсации, забросов давлений и других возможных видов отказов на этапе запуска).

    Естественно, что принудительного воспламенения требуют несамовос­пламеняющиеся топлива. Ими являются углеводородные горючие, работающие с кислородом или с азотнокислотными окислителями, а также кислородно-водородное топливо.

    Существует несколько способов воспламенения горючих смесей.

    Химический способпредусматривает на начальном этапе запуска ис­пользование самовоспламеняющихся компонентов топлива, которые запасают в трубопроводах или специальных емкостях перед камерами двигателя и отде­ляют их от основного топлива мембранами свободного прорыва. Запас пуско­вых порций самовоспламеняющегося топлива должен обеспечивать работу ка­меры на пусковом топливе, примерно равном 80 % времени запуска. Целесооб­разность применения этого способа ограничивается ДУ однократного включе­ния.

    Добавка триэтилбора или триэтилалюминия («2 — 3 %) к керосину обеспечивает надежное одно- и многократное его воспламенение с кислородом. Однако высокая токсичность этих добавок сдерживает их широкое практиче­ское применение, так как токсичным становится не только горючее, но и про­дукты сгорания, содержащие эти добавки.

    Пиротехнический способвоспламенения горючих смесей предусматри­вает установку на стартовых позициях внутрь камеры двигателя системы пирс-зарядов, одновременное срабатывание которых обеспечивает надежное вос­пламенение пусковой части топлива, рис.89. Число пирозарядов зависит от размеров камеры двигателя. Для одновременного воспламенения многокамер­ных двигателей в каждой камере должно быть размещено не менее шести заря­дов, ориентированных друг относительно друга так, чтобы первый воспламе­нившийся заряд поджигал соседний с ним. Для обеспечения надежного вос­пламенения горючих смесей необходима определенная мощность тепловыде­ления в короткий промежуток времени, которая способна не только иницииро­вать горение топлив, но и уменьшить начальную задержку его воспламенения.

    Систему пирозарядов можно применять для многократного включения газогенераторов и камер двигателя. При этом число установленных зарядов будет определять число включений. Однако если не применять специальных мероприятий по теплоизоляции этих зарядов, то в процессе работы двигателя





    или после его останова вследствие чрезмерного нагрева зарядов возможно их самопроизвольное срабатывание.

    Рис89

    Система пирозарядов, обеспечивающая воспламенение топлива в камере двигателя на стартовых позициях

    Предварительный нагрев элементов конструкции двигателей, исполь­зующих гидразин как монотопливо, примерно на 600 К способствует ак­тивному процессу саморазложения гидразина.

    Термохимический способвоспламенения горючих смесей предусматри­вает организацию пускового факела с помощью специальной пусковой камеры (форкамеры), которая устанавливается на форсуночной головке двигателя, рис.90. Перед запуском основной камеры двигателя любым из способов вос­пламеняется пусковое топливо в форкамере. В частности, возможен вариант использования газов, отобранных из газогенератора питающего ТНА, для вос­пламенения пускового топлива. Возможно также применение в форкамере са­мовоспламеняющихся топлив или легковоспламеняющихся топлив («кислород + этиловый спирт»).

    Для обеспечения надежного воспламенения топлива в камере требует­ся непрерывная работа запального факела для поддержания горения основных расходов топлива вплоть до установления номинального давления в основной камере двигателя. Для этого необходимо, чтобы давление подачи пускового топлива перед форсунками форкамеры всегда превышало давление в основной камере двигателя, а перепад давлений на сопле форкамеры всегда был сверх­критическим. Если основное топливо только пересекает пусковой факел или в него не попадает, то оно воспламеняется с большой задержкой, что сопровож­дается забросами и пульсациями давления и запуск становится ненадежным.

    Для избежания аномальных явлений необходим такой пусковой факел, чтобы время пребывания в нем основного топлива было наибольшим, а его форма гарантировала попадание в пусковой факел всего основного топлива. Из всех возможных вариантов расположения форкамеры на основной камере для на­дежного воспламенения топлива должен быть принят вариант соосного распо­ложения форкамеры с основной камерой двигателя. При этом профиль расши­ряющейся части сопла форкамеры обеспечивает полный контакт пускового факела с основным топливом (хотя продукты сгорания не во всех случаях мо­гут следовать за профилем сопла).



    Рис.90

    Форкамерный способ воспламенения горючих смесей

    Для более плавного запуска с форкамерным устройством больших ка­мер двигателей в атмосферных условиях при включении основного расхода топлива предпочтительнее опережение подачи окислителя.

    В современных ЖРД необходимая мощность тепловыделения для га­рантированного воспламенения горючих смесей требует пусковых расходов для форкамерного устройства примерно на два - три порядка меньше, чем рас­ходы основной камеры.

    Форкамерные устройства для воспламенения горючих смесей по срав­нению с другими способами имеют то преимущество, что могут быть включе­ны и в период останова двигателя. Это способствует принудительному догора­нию топлива, попадающего в камеру двигателя из заклапанных полостей после закрытия главных топливных клапанов.

    Термоакустический способвоспламенения горючих смесей основан на эффекте разогрева газа в тупиковой полости при набегании на ее открытый торец струи холодного газа со сверхзвуковой скоростью, рис.91.


    1   ...   8   9   10   11   12   13   14   15   16


    написать администратору сайта