В истории математики принято различать следующие четыре периода.. В истории математики принято различать следующие четыре периода
Скачать 16.42 Kb.
|
В истории математики принято различать следующие четыре периода: 1. период накопления первоначальных математических сведений; (до VI в. до н.э.) 2. период математики постоянных величин; (VI в. до н.э.- XVI в н.э.) (средневековье) (э Возрождения, начало XV-XVI 3. период математики переменных величин (XVII-XX вв.) 4. период современной математики (ХХ) Первый период (период зарождения математики), истоки которого теряются в глубине веков, продолжался до VI—V вв. до н.э. В то время проходил процесс накопления человеком математического знания, создавались приемы счета, устная и письменная нумерация, системы счисления. Так как такая «рецептурная» арифметика и геометрия необходимы были для простейшего счета хозяйственных предметов и измерения земельных площадей, то говорить о математике как науке в тот период нет достаточных оснований. Во второй период (период элементарной математики), длившийся с VI—V вв. до н. э. по XVI в. включительно, осуществлялась систематизация накопленных математических знаний и разработка методов доказательства. Представители греческой математической культуры (Фалес, Пифагор, Платон, Аристотель и др.) характеризовались более рациональным складом мышления по сравнению с их предшественниками из стран Древнего Востока. В творчестве Евклида (III в. до н. э.) эта особенность еще более усиливается. Его система, изложенная в «Началах», была исторически первой математической (точнее, геометрической) системой, определившей создание соответствующего стиля мышления. Она знаменовала собой первую интенсивную революцию в математике, качественную перестройку и упорядочение накопленного математического знания. Логические средства, которые применил Евклид, — это формальная логика Аристотеля. Его образец мышления, построенный по схеме «определения — аксиомы — теоремы», получил отражение в творчестве многих поколений ученых, но прежде всего в исследованиях Архимеда, Аполлония, Менелая, Птолемея, Диофанта. В ТРЕТИЙ период развития математики формируются тригонометрия и алгебра, расширяется понятие числа, устанавливаются связи между арифметикой и геометрией. Математика выделяется в самостоятельную науку, предметом которой являются операции с постоянными величинами (числами, геометрическими фигурами). Правда, здесь следует помнить, что уже в греческой математике имелись примеры изучения связей между переменными величинами (зависимость площади круга от его радиуса, синус угла, применение в неявном виде понятия предела при определении длины окружности и т. п.). Идея движения, вошедшая в математику, позволила следующим образом определить ее предмет в третьем периоде: математика есть наука об изменениях величин и геометрических преобразованиях. К концу третьего периода (середина XIX в.) достаточно богатыми были алгебраические теории (возникает алгебра логики, линейная алгебра, топологическая алгебра, дифференциальная алгебра и т. п.), теория чисел, теория дифференциальных уравнений, вариационное исчисление, теория функций действительного переменного и др. В изменении стиля математического мышления было «повинно» определенное противопоставление «чистой» (теоретической) и «прикладной» математики. Формулы и математические преобразования (выкладки) часто уступали место непосредственному рассуждению. Нарождалась так называемая «математика понятий», и французский математик Э. Галуа (1811—1832) явился одним из первых и наиболее блестящих ее представителей, с именем которого связаны исследования о разрешимости уравнений произвольной степени. Рассматривая уравнение, которое необходимо было решить, он связывал с ним некоторую группу операций и доказывал, что свойства уравнения отражаются на особенностях данной группы. Так как различные уравнения могут иметь одну и ту же группу, достаточно вместо этих уравнений рассмотреть соответствующую им группу. Это открытие ознаменовало начало современного этапа развития математики. В этот период формируется и современное представление о математической строгости, а на мировой арене появляются русские математики — Н.И. Лобачевский (1792—1856), М.В. Остроградский (1801-1862), В.Я. Буняковский (1804-1889), П.Л. Чебышев (1821— 1894), Я.М. Ляпунов (1911-1973), А.А. Марков (1903-1979) и др. Таким образом, с середины XIX в. можно говорить о четвертом периоде развития математики — периоде современной математики. Он характеризуется созданием новых областей и теорий математики: неевклидовой геометрии, топологии; теории групп, векторного и тензорного исчислений, функционального анализа, теории множеств. Характерные черты современной математики: ♦ восхождение ко все более высоким степеням абстракции и идеализации; ♦ доминирующий структурный подход к пониманию предмета математики, аксиоматическое построение теорий, усиление геометрических методов исследования; ♦ интенсивный процесс расширения предмета исследования в науке; ♦ глубокая диалектическая связь между фундаментальными разделами и теориями математики; ♦ возникновение новых средств вычислений, методов исследования и доказательства; ♦ развитие знаковой символики и средств оперирования специальными математическими знаками; ♦ компьютеризация математики, то есть процессы, происходящие в науке под воздействием внедрения и использования ЭВМ; ♦ изучение математических объектов вместе с отображениями этих объектов друг в друге; ♦ исследование математических систем путем выявления в них различного рода математических структур; ♦ высокая эффективность (почти универсальность) применения аппарата и методов математики в естественных, технических и гуманитарных науках. |