Главная страница

В настоящее время главное направление модернизации Российского образования обеспечить его новое качество


Скачать 0.71 Mb.
НазваниеВ настоящее время главное направление модернизации Российского образования обеспечить его новое качество
Дата03.09.2019
Размер0.71 Mb.
Формат файлаdoc
Имя файлаdiplom-kompyuternoe-metematicheskoe-modelirovanie_23e258995e7.doc
ТипАнализ
#85809
страница6 из 8
1   2   3   4   5   6   7   8

3.2.3. Тема «Логико-лингвистические информационные модели»



Под логико-лингвистической моделью понимается среда для моделирования некоторого класса объектов. В этих моделях выделяют такие компоненты, как синтаксис, семантику, логику и правила вывода.

Данная тема открывает широкие возможности для изучения вопросов, пограничных в информатике и лингвистике. Как известно, лингвистика — наука о языке. Языки можно разделить на две группы: естественные и искусственные. Естественные языки (русский, английский и т.д.) мало ф ормализованы; тем не менее свободное описание предмета или процесса на таких языках является своеобразной моделью этого предмета или процесса. Такую модель часто называют вербальной. В определенном смысле можно считать, что любое литературное произведение есть вербальная модель того явления, о котором оно Написано.

Однако не всякое моделирование (равно как и не всякий информационный процесс) следует считать объектом приложения информатики. Непременным атрибутом языка, на котором строится любая информационная модель, является наличие формализации. Эта ф ормализация может быть очень жесткой (например, язык программирования, в котором почти всегда перестановка дух рядом стоящих символов означает или изменение смысла фразы, или ее обессмысливание); ф ормализация может быть существенно менее жесткой (например, при использовании языка математических формул). В информатике проблемы ф ормализации языка играют важную роль. Большинство ученых, работающих в этой сфере, считают, что любой естественный язык ф ормализован недостаточно для того, чтобы непосредственно строить информационные модели, причастные к информатике.

Недостаточная формализация живого языка препятствует эффективному решению таких задач, как машинный перевод, распознавание смысла текстов, вводимых человеком в диалоге «человек-компьютер» (и, как следствие, невозможность создать обучающие компьютерные программы столь же эффективные, как учитель-человек).

Во вводной беседе на эту тему уместно ввести учащихся в круг проблем искусственного интеллекта, связанных с моделированием в сфере языка: представление знаний, моделирование рассуждений, компьютерная лингвистика, машинный перевод. Цель — общее развитие учащихся, привлечение их внимания к принципиальным проблемам, имеющим в то же время большое прикладное значение.

В отношении чисто логической модели представления знаний уместно ограничиться сообщением о том, что этот путь существует, но в настоящее время потеснен другими. Исчисление предикатов, лежащее в основе логического моделирования знаний, является достаточно сложной математической теорией и рассматривать его в школьном курсе нецелесообразно, тем более что в современной практике компьютерного моделирования оно почти не используется.

Обсудите методику введения в сетевые модели представления знаний. Этот способ моделирования опирается на наглядные схемы и вполне доступен. Его основная идея состоит в том, что любое знание можно представить в виде совокупности объектов (понятий) и связей (отношений) между ними. На простом примере реализуйте такое представление и переведите его в графическую форму, а затем поручите учащимся выполнить такое моделирование (на самостоятельно выбранных примерах или предложенных учителем).

Пример. Рассмотрим следующий текст: «Из гаража выпущен на линию автобус. Он работает 8 часов и возвращается в гараж. В случае неисправности он следуют в ремонтную зону».

Выделим объекты, фигурирующие в этом примере: «автобус», «гараж», «ремонтная зона». Понятия: «работать 8 часов». Отношения: «выпустить на линию», «быть исправным», «быть неисправным», «вернуться в гараж». Теперь построим представление знаний зафиксированных в этом тексте, в виде семантической сети, в которой понятия и объекты представлены в виде вершин сети, отношения — в виде линий, связывающих соответствующие вершины.

В процессе построения модели обратите внимание учащихся на то, что любой текст, описывающий реальные ситуации, всегда можно смоделировать таким образом. для подтверждения этого предложите им либо построить модели по представленным преподавателем текстам, либо — по собственным (не слишком сложным).

Непосредственно в ходе указанных построений у учащихся возникает представление о неоднозначности выполнения задания. Оно вполне справедливо: представление (моделирование) знаний с помощью семантических сетей действительно неоднозначно, что ограничивает применимость этого вида моделирования для решения практически важных задач.

При изучении данной темы возникает проблема отсутствие компьютерной поддержки. Поскольку профильньтй курс информатики без нее вряд ли возможен, то эта тема может рассматриваться лишь как часть профильного курса.

Продукционная модель представления знаний реализуется в виде ядра продукции, которое состоит из системы фраз типа «Если А то В» и некоторых вспомогательных элементов. На продукционном принципе моделирования знаний построен язык программирования Пролог, который (вместе с изучением самих принципов) вполне может быть темой профильноориентированного курса информатики.

Разговор о логико-лингвистических информационных моделях уместно использовать и для достижения иных, не указанных выше, общеобразовательных целей — для знакомства с компьютерной лингвистикой. данная наука также связана с моделированием в сфере языка. Вопросы анализа текстов на естественном языке, машинного перевода, синтеза текстов на естественном языке могут стать темами для рефератов, докладов учащихся.

3.2.4. Тема «Технология компьютерного математического моделирования»



Целесообразно вводные занятия по этой теме проводить в виде беседы, привлекая знания учеников по различным общеобразовательным дисциплинам, их жизненный опыт. Изложение необходимо иллюстрировать большим количеством примеров.

Особая роль первого раздела заключается в том, что здесь потеряются и обобщаются основные понятия компьютерного математического моделирования (КММ), известные из базового курса информатики, вводятся новые — «моделирование», «информационное моделирование», «математическое моделирование», «формализация», «идентификация модели» и др.

Другой важный аспект темы — формирование представления об этапах компьютерного математического моделирования. Здесь, с одной стороны, фигурируют приведенные выше понятия, с другой присутствует полная технологическая цепочка КММ. Конечно, все эти этапы будут неоднократно повторяться при исследовании конкретных процессов (объектов), но основы закладываются именно на вводных занятиях. действительно, одним из условий успешного усвоения учащимися систематического курса КММ является наличие у них хорошо развитых представлений об этапах КММ, о значении каждого из этапов.

Формализованная схема является промежуточным звеном между содержательным описанием и математической моделью и разрабатывается в тех случаях, когда из-за сложности исследуемого процесса переход от содержательного описания к математической модели оказывается невозможным. На этапе построения формализованной схемы должна быть дана точная математическая задача исследования с указанием окончательного перечня искомых величин и оцениваемых зависимостей.

Прежде всего составляется список величин, от которых зависит поведение объекта или ход процесса, а также список тех величин, которые желательно получить в результате моделирования.

Обозначив первые (входные) величины через х1, х2, ..., хn, а вторые (выходные) через у1, у2, ..., уk, можно поведение объекта или процесса символически представить в виде

уj = F (х1,х2,...,хп) (=1,2,...,k),

где Fj символически обозначает некоторые математические операции над входными величинами.

Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием. Чаще всего невозможно, да и не нужно, учитывать все факторы, которые могут повлиять на значения интересующих нас величин у. От того, насколько умело выделены важнейшие факторы, зависит успей моделирования, быстрота и эффективность достижения цели. Отбрасывание менее значимых факторов огрубляет модель и способствует пониманию главных свойств и закономерностей объекта моделирования.

На этапе перехода от формализованной схемы к математической модели необходимо перейти от абстрактной формулировки к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстанет перед нами в виде уравнения, системы уравнений, неравенств, матриц, дифференциальных уравнений и т.д.

В беседе следует подчеркнуть тот факт, что математическое моделирование отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограничены и, как правило, гораздо сложнее численных. Поэтому при проведении занятий по КММ в школе следует пользоваться численными методами, реализуемыми на компьютерах. Это создает определенное методическое единстве курса и заметно снижает барьер необходимой математической подготовки учащихся. Разумеется, и в численные методы при профессиональном занятии математическим моделированием приходится углубляться настолько, что при этом, требуется значительное математическое образование, но можно попытаться в школьной практике ограничиться лишь простейшими из них.

И, наконец, после изучения этого раздела учащиеся должны уяснить подходы к классификации компьютерных математических моделей. Как известно, бывают классификации моделей по используемому математическому аппарату, по отраслям наук и т.д. Наиболее органичной представляется классификация по целям моделирования. действительно, выделение целей моделирования — это первое, что необходимо сделать перед содержательным описанием и формализацией объекта (процесса), и в конечном итоге именно цели моделирования определяют, какая модель будет построена. При этом важно подчеркнуть, что в зависимости от целей моделирования и выбранных факторов для одного и того в процесса можно получить существенно различающиеся математические модели. Учителю следует привести примеры постановки задач, приводящих к моделям, относящимся к основным классам: дескриптивным, оптимизационным, многокритериальным, игровым, имитационным.

3.2.5. Тема «Моделирование физических процессов»



Эта тема фигурирует в нескольких вариантах курса компьютерного моделирования. Причина — традиции и относительная простота решаемых задач, их близость школьному курсу физики.

Как правило, эта тема является началом к изложению компьютерного моделирования в физике. Поэтому ей может предшествовать вводная лекция (беседа) о компьютерном моделировании физических процессов в целом.

В начале на ряде примеров проиллюстрируйте утверждение, что физика — наука, в которой математическое моделирование является чрезвычайно важным методом исследования. Причину этого в целом можно сформулировать так: при максимальном проникновении в физику математических методов, порой доходящем до тактического сращивания этих наук, реальные возможности решения возникающих математических задач традиционными методами очень ограничены.

Во многих вариантах курса компьютерного моделирования математические модели в физике по праву занимают больший объем по сравнению с другими, и на их изучение отводится большее количество времени. действительно, создание той или иной модели физического процесса является естественным и не требует некоторых искусственных приемов, к которым часто приходит прибегать в других предметных областях. Поэтому восприятие этих математических описаний процессов или явлений не вызывает у учащихся, по крайней мере, психологических трудностей. В профильном курсе, ориентированном на учащихся, специализирующихся по физико-математическому и естественнонаучному профилю, целесообразно наибольшее внимание уделить именно моделям физики.

Перечень рассматриваемых вопросов может быть таков:

• движение тел с учетом сопротивления среды;

•движение маятника с учетом сопротивления среды, вынужденные колебания, резонанс и т.д.

• движение небесных тел (задача двух тел);

• движение электрических зарядов;

• тепломассоперенос (на примере процесса теплопроводности в линейном стержне).

Номенклатура компьютерных математических моделей в физике может ориентироваться на подготовленность и интересы учащихся, их специализацию в том или ином разделе физики.

Цели обучения:

• ввели в КММ на примере моделей из области физики;

• отработать схемы вычислительного эксперимента на сравнительно простых, знакомых по курсу физики задачах.

Поставленные задачи обучения считаются успешно выполненными, если у учащихся вырабатывается комплекс указанных ниже знаний, умений и навыков.

Изучение каждой новой содержательной задачи и, как следствие, получение новой математической модели требует мотивировки целесообразности ее введения. Мотивировка может, во-первых, опираться на жизненный опыт учащихся, во-вторых, достигаться путем разрешения проблемной ситуации.

Моделирование процессов движения тел в среде. При моделировании процесса движения тела, прежде всего, целесообразно рассмотреть традиционные для школьного курса физики динамические модели, но с учетом сопротивления среды. Это свободное падение тела, полет тела, брошенного под углом к горизонту, движение тела с переменной массой. При этом составляющие силы сопротивления можно рассмотреть предварительно перед изучением конкретных моделей либо в ходе построения одной из моделей.

Более детально обсудим методику построения компьютерных математических моделей физических процессов и их последующего исследования на примере нескольких задач.

Первая из них — моделирование свободного падения тела с учетом сопротивления среды. Основная дидактическая роль этой наиболее простой задачи — практическое знакомство с этапами компьютерного математического моделирования, освоение этих этапов, приобретение навыков формулирования и разрешения учебных проблем, проблемных ситуаций. Несмотря на то, что на первый взгляд она является простой, при ее исследовании придется решить ряд серьезных проблем, о чем будет сказано ниже.

В ходе обучения обязательно придется пользоваться понятиями «предел» и «производная». Понятие «предел» не вызывает существенных затруднений; в контексте данного обсуждения вполне достаточно интуитивного понимания предела, сформированного у учащихся к Х классу.

Не совсем так обстоит дело с понятием «производная». Возможны две ситуации:

1) учащиеся вполне владеют понятием и дифференциальная форма записи второго закона Ньютона (и последующих при решении конкретных задач дифференциальных уравнений) будет им понятна (при этом никакой техники дифференцирования, тем более решения дифференциальных уравнений, не требуется);

2) учащиеся не знакомы с этим понятием; в этом случае необходимо сделать математическое отступление и пояснить понятие «производная», на что, как показывает опыт, вполне достаточно одного урока.

Другая методическая проблема, которую необходимо решить, — строить модели динамических процессов в виде дифференциальных или конечно-разностных уравнений. Как показывает практика, учащиеся физико- математических классов вполне способны воспринять дифференциальные уравнения и численные методы их решения. для этого достаточно ввести дифференциальные уравнения и объяснить простейшие численные методы их решения, базируясь на физическом и геометрическом смысле производной.

При использовании численных методов интегрирования дифференциальных уравнений разумно рассмотреть явные схемы невысокого порядка (не выше второго); если кто-либо из учащихся проявит интерес именно к методам решения систем дифференциальных уравнений и их устойчивости, то следует предложить им самостоятельно изучить литературу, где излагаются явные методы более высокого порядка либо неявные схемы. Такой подход подтвердил свою жизнеспособность.

При изучении динамических процессов в менее подготовленной аудитории рекомендуется ограничиться конечно-разностными уравнениями. Любую модель из рассмотренных ниже можно сформулировать в конечноразностном виде, вообще не упоминая о дифференциальных уравнениях (примеры далее приводятся).

Свободное падение тела с учетом сопротивления среды. В этой и многих других физических задачах, на основе которых строятся модели, фундаментальную роль играет второй закон Ньютона — снова динамики.

Формулируем его вначале в «школьной» форме , а затем, чтобы исследовать реалистические ситуации, необходимо подвести учащихся к более общей математической форме. Проводим следующее рассуждение: если движение происходит с переменной скоростью, то, как известно учащимся, для его характеристики привлекаются два понятия: средняя скорость за некоторый промежуток времени Δt, равная отношению , где — пройденный путь и мгновенная скорость в данный момент времени t, которая на математическом языке записывается как:



Точно так же при движении с постоянным ускорением можно ввести два понятия — среднее ускорение за время Δt, равное
1   2   3   4   5   6   7   8


написать администратору сайта