Главная страница

лекции по сухтп. В системы управления химикотехнологическими процессами значение автоматического управления для развития химической промышленности на современном этапе


Скачать 2.38 Mb.
НазваниеВ системы управления химикотехнологическими процессами значение автоматического управления для развития химической промышленности на современном этапе
Анкорлекции по сухтп
Дата20.03.2020
Размер2.38 Mb.
Формат файлаdoc
Имя файла0753063_3909D_lekcii_po_suhtp.doc
ТипЗакон
#112655
страница23 из 23
1   ...   15   16   17   18   19   20   21   22   23


а б

Рис. 74. Схемы клапанов с мембранными исполнительными механизмами:

а — нормально открытый (НО); б — нормально закрытый (НЗ); / — шток; 2 — пружина; 3 — мембрана; 4 — затвор; 5 — седло

Исполнительное устройство является «рабочей лошадкой» процессов управления. Одно из главных требований к ИУ — высокая надежность работы. В большинстве современных контуров управления используются датчики и регуляторы без движущихся частей. Единственным элементом контура, содержащим движущиеся части, остается исполнительное устройство. Следовательно, оно наиболее подвержено износу и коррозии и требует повышенного внимания для того, чтобы находиться в рабочем состоянии. К сожалению, исполнительное устройство является также и наиболее затратным элементом контура регулирования. На его долю приходится от 50 % до 75 % капитальных затрат на контур регулирования и до 90 % затрат на ремонт и текущие расходы.

Правильный выбор и расчет исполнительных устройств имеет первостепенное значение, поскольку погрешности в их работе непосредственно влияют на качество управления.

Основными функциональными блоками ИУ являются исполнительный механизм и регулирующий орган.

3.4.1. Регулирующие органы

Регулирующий орган (РО) — техническое средство изменения материального или энергетического потока, влияющего на регулируемую величину в ОУ. Это устройство, непосредственно воздействующее на ОУ для поддержания заданного значения регулируемой величины или изменения ее по заданному закону. Регулирующие органы различаются по непрерывности воздействия на расход рабочей среды, по конструкции, по пропускным характеристикам, по типоразмерам, по материалам, применяемым для их изготовления, области применения.

Для непрерывного регулирования расхода жидкостей и газов в химической промышленности широко применяются дроссельные РО, представляющие собой переменное гидравлическое сопротивление для протекающей рабочей среды. Изменение расхода рабочей среды осуществляется за счет изменения проходного сечения РО.

Распространены также устройства для регулирования расхода рабочей среды изменением располагаемого напора. К этому классу РО можно отнести приводы с регулируемой угловой скоростью вращения, устройства для ее изменения.

Для регулирования расхода сыпучих материалов применяются питатели: ленточные, шнековые, скребковые, дисковые, лопастные и т. д.

Дроссельные регулирующие органы

К дроссельным РО можно отнести регулирующие клапаны различных конструкций (односедельные, двухседельные, клеточные, шаровые, трехходовые, шланговые, диафрагмовые и др.), поворотные заслонки, шиберы, краны и т. д.

Среди регулирующих клапанов дроссельного типа различают клапаны прямого и обратного действия. У клапанов прямого действия (см. рис. 74, а) затвор при движении вниз уменьшает проходное сечение РО, а у клапана обратного действия (см. рис. 74, б) — увеличивает.

Иногда, в зависимости от характера движения и формы затвора, различные конструкции РО объединяют в конструктивные группы: с плунжерным затвором (односедельные, двухседельные, клеточные, трехходовые); бесплунжерные (шланговые, диафрагмовые), с поворотным затвором (шаровые, поворотные заслонки).

По числу затворов дроссельные устройства делятся на односедельные и двухседельные.

В односедельном РО (рис. 75, а) проходное сечение образовано одним цилиндрическим или профилированным затвором 2, который перемещается вдоль оси неподвижного седла 3. При перемещении затвора изменяется проходное сечение и соответственно расход среды, проходящей через РО. Односедельные РО применяют в ИУ малых размеров при низких давлениях среды. Для регулирования расхода особо агрессивных сред применяют футерованные односедельные РО. Материалом футеровки служат пластические материалы, такие как фторопласт, пентапласт и т. д. Основным недостатком односедельных РО является неразгруженный затвор, поскольку регулируемая рабочая среда действует на плунжер сверху и снизу с разной силой, так как находится под разным давлением. Это приводит к необходимости применять сравнительно мощные исполнительные механизмы.

а б

Рис. 75. Схемы регулирующих органов:

а — односедельный; б — двухседельный (/ — шток; 2 — затвор; 3 — седло)

В двухседельном РО (рис. 75, б; 76, б) проходное сечение образовано двумя цилиндрическими или профилированными затворами, перемещающимися вдоль оси двух неподвижных седел. При перемещении затворов изменяется проходное сечение и соответственно расход среды, проходящей через РО. Двухседельные РО отличаются высокой надежностью и применяются для изменения расходов жидкостей, паров и газов, параметры которых могут изменяться в широких пределах. Пропускная способность двухседельного РО примерно в 1,6 раза выше пропускной способности односедельного РО при одинаковом диаметре условного прохода. Затвор двухседельного РО разгружен, так как усилия, создаваемые регулируемой средой, действуют на плунжеры в противоположных направлениях. Разгрузка затвора в двухседельных РО по сравнению с односедельными улучшает качество регулирования и снижает необходимое перестановочное усилие ИМ, а следовательно, габариты и массу ИМ.



Рис. 76. Конструкция регулирующих органов:

а — клеточного (1 — корпус; 2 — направляющая; 3 — затвор); б двухседельного (7 — седло; 2 — шток; 3 — сальник; 4 — затвор)

Замечание

Односедельные и двухседельные РО не применяются для изменения расхода суспензии или пульпы, а также расхода жидкостей, способных к кристаллизации. В противном случае твердые частицы оседают в нижней части регулирующего органа, что препятствует нормальному перемещению его затвора. Кроме того, наличие твердых частиц в движущейся среде приводит к износу корпуса и поверхностей затвора, а также седел.

В клеточном РО (рис. 76, а) проходное сечение образовано профилированными отверстиями в клетке 2 и затвором 3, перекрывающим эти отверстия. Затвор 3 представляет собой полый цилиндр с отверстиями в верхнем торце для уравновешивания давлений над затвором и под ним. Затвор перемешается в клетке-направляющей 2, которая одновременно служит седлом затвора. В данной конструкции затворная пара имеет не одну, а две посадочные поверхности, что позволяет значительно повысить герметичность регулирующего органа. В клеточном регулирующем органе устранены недостатки односедельного РО (неразгруженность затвора) и двухседельного РО (негерметичность затвора).

В шланговом регулирующем органе (рис. 77) регулируемая среда проходит через эластичный патрубок 3 (шланг), который, деформируясь под действием усилия, развиваемого исполнительным механизмом, изменяет площадь проходного сечения и, следовательно, пропускную способность. В зависимости от среды шланги могут быть изготовлены из бензостойких, маслостойких, химически стойких, эрозионно-стой-ких материалов. Шланговые регулирующие органы применяются для изменения расхода сред, содержащих твердые и абразивные частицы, шламообразующих, а также агрессивных сред, например, кислот, в которых стойки резиновые шланги соответствующих марок. Основными преимуществами шланговых РО являются малое гидравлическое сопротивление, отсутствие застойных зон, отсутствие уплотнения штока в связи с герметичностью проточной части, надежное перекрытие потока в закрытом положении. К недостаткам шланговых РО относятся невысокая допустимая температура (до 80 °С), небольшое рабочее давление (до 1 МПа), значительная неуравновешенность РО, небольшой срок службы эластичного патрубка.

В диафрагмовом регулирующем органе (рис. 6.78) изменение проходного сечения осуществляется за счет деформации эластичной диафрагмы 2 относительно неподвижного седла под действием усилия, развиваемого исполнительным механизмом. Эластичная диафрагма может быть изготовлена из резины, фторопласта и т. п. Диафрагмовый РО применяется для изменения расхода агрессивных сред (например, кислот) при невысоких давлениях и температурах. Внутренняя поверхность корпуса РО футерована химически стойким материалом, например, полиэтиленом, резиной, фторопластом, или покрыта эмалью. Основным преимуществом диафрагмовых РО является применение дешевых антикоррозионных материалов вместо дорогостоящих нержавеющих сталей, а также бессальниковая конструкция. К недостаткам диафрагмовых РО относится их неразгру-женность и ограниченные давления и температуры регулируемых сред (до 150 °С).



Рис. 77. Шланговый регулирующий орган:

/ — шток; 2 — валики-траверсы; 3 — эластичный патрубок



Рис. 78. Диафрагмовый регулирующий орган: / — шток; 2 — мембрана

Шаровой регулирующий орган (рис. 79) снабжен поворотным затвором 2 в виде сферы с цилиндрическим отверстием и седлами 3, уплотнительные поверхности которых имеют форму сферы. Шток /, связанный с исполнительным механизмом, осуществляет поворот шарового затвора, изменяя тем самым площадь проходного сечения. В закрытом положении затвор упирается в пару седел, изготовленных из упругих материалов (например, фторопласта), обеспечивая герметичность перекрытия прохода. Чрезвычайно простая форма проточной части шарового РО позволяет его применять для регулирования потоков вязких и кристаллизующихся сред, шламов, пульп, а также сред, содержащих абразивные частицы. Пропускная характеристика шарового РО близка к равнопроцентной. При открытом положении затвора сопротивление потоку очень мало. Шаровые РО могут работать, выдерживая перепады давления до 8 МПа в интервале температур от —60 °С до +230 °С.

Затвор заслоночного регулирующего органа (рис. 80) представляет собой заслонку 2 (например, металлический диск), при повороте которой изменяется проходное сечение и, следовательно, пропускная способность РО. Когда заслонка полностью открыта (расположена параллельно оси трубопровода), пропускная способность РО максимальна. При закрытой заслонке (расположенной перпендикулярно оси трубопровода) пропускная способность РО минимальна (так как затвор не обеспечивает полного перекрытия трубопровода; всегда остается небольшой кольцевой зазор). Для поворота заслонки нужен ИМ относительно небольшой мощности. При одинаковых размерах условного прохода поворотные заслонки обладают большей пропускной способностью, чем двухседельные регулирующие клапаны (примерно на 50 %). Заслоночные РО применяются для изменения больших расходов газа и пара при невысоких перепадах давления (до 2,5 МПа) и температурах до 400 °С.



Рис. 79. Шаровой регулирующий орган: / — шток; 2 — шаровой затвор; 3 седло

Рис. 80. Заслоночный регулирующий орган: / — корпус; 2 — затвор (заслонка)

В шиберах затвор, изготовленный в виде полотна, перемещается перпендикулярно направлению потока (рис. 81). Шиберы применяются для регулирования расходов воздуха и газов при небольших статических давлениях (до 0,01 МПа), а также для дозирования сыпучих материалов. Шиберы изготовляют из различных материалов, что определяется условиями эксплуатации. Для работы с инертными газами (температура до 300 °С) шиберы изготовляют из листовой стали; при температуре выше 300 °С — из чугуна. Для работы с агрессивными газами шиберы изготовляют из легированных сталей (или из листовой стали со специальным покрытием). Шиберы устанавливают на трубопроводах, коробах и каналах любой геометрической формы сечения.


Рис. 81. Схема шибера

3.4.2. Исполнительные механизмы

Исполнительный механизм (ИМ) предназначен для усиления мощности командного сигнала, получаемого от регулятора, и воздействия на регулирующий орган.

По виду используемой энергии ИМ делят на электрические, пневматические, гидравлические.

При выборе исполнительного механизма учитывают следующие требования:

  • ИМ должен развивать перестановочное усилие, достаточное для преодоления реакции рабочих частей регулирующих органов;

  • ИМ должен обладать детектирующим действием, т. е. передавать воздействие только от исполнительного устройства к объекту регулирования;

  • значения основных величин, характеризующих статические и динамические свойства ИМ (порог чувствительности, гистерезис, люфт и т. д.), должны быть соизмеримы со значениями аналогичных величин других элементов системы управления (регулирования);

  • в конструкции ИМ желательно иметь дополнительные устройства, такие как ручной привод местного управления регулирующим органом и т. д.

Важным параметром регулирующего органа, оказывающим влияние на выбор типа и размера ИМ, является реакция, возникающая при перемещении рабочих частей. При этом учитывается как величина реакции, так и ее постоянство во времени при различных нагрузках. По этому параметру РО подразделяются на разгруженные, частично разгруженные и перегруженные.

Пневматические исполнительные механизмы

Пневматические исполнительные механизмы просты, надежны и удобны в эксплуатации. Они взрыво- и пожаробезопасны, поэтому широко применяются в химической промышленности. Пневматические ИМ обладают высоким быстродействием и точностью позиционирования при умеренном перестановочном усилии и небольших габаритах.

Входным сигналом пневматических исполнительных механизмов является давление сжатого воздуха (0,02...0,1 МПа), соответствующее командному сигналу регулятора.

Замечание

Пневматические ИМ можно использовать в комплекте не только с пневматическими регуляторами, но и с регуляторами, формирующими электрический командный сигнал. В последнем случае для преобразования электрического сигнала в пневматический используется электропневмопреобразователь.

В зависимости от вида чувствительного элемента, воспринимающего энергию сжатого воздуха и преобразующего ее в перестановочное усилие выходного элемента, пневматические ИМ делятся на мембранные, поршневые, сильфонные и лопастные.

Наибольшее распространение получили мембранные исполнительные механизмы (МИМ) (рис. 84, а). Прорезиненная мембрана 3 с жестким металлическим центром зажата между двумя фланцами, разделяя пространство МИМ на две полости. Жесткий центр мембраны связан со штоком /. Под мембраной расположена противодействующая пружина 2. Командный сигнал в виде давления сжатого воздуха подается в рабочую полость над мембраной, создавая усилие



пропорциональное командному сигналу — эффективная площадь мембраны).

Под действием усилиямембрана вместе со штоком перемещается вниз. Пружина сжимается, создавая уравновешивающее усилие



пропорциональное перемещению штока ИМ (с — коэффициент жесткости пружины). При равновесии, т. е.

откуда следует, что в статическом режиме перемещение штока ИМ пропорционально командному сигналу. Это позволяет использовать величину командного давления в качестве сигнала, определяющего положение регулирующего органа. Статическая характеристика, связывающая величину командного давления с положением штока во всем диапазоне его перемещения, называется ходовой характеристикой ИМ.




Рис. 84. Исполнительные механизмы:

а — мембранный (/ — шток, 2 — пружина, 3 — мембрана); б — поршневой (/ — поршень, 2 — пружина); в — двухфазный асинхронный двигатель; г — электромагнитный (У — индукционная катушка, 2 — сердечник, 3 — пружина)

Шток исполнительного механизма соединен со штоком регулирующего органа. С увеличением давления воздуха в полости над мембраной 3 шток / вместе с затвором 4 движется вниз и уменьшает проходное сечение клапана, что снижает расход рабочей среды. При уменьшении давления воздуха затвор за счет упругих сил пружины 2 приподнимается, и клапан открывается.

В зависимости от направления движения штока различают мембранные исполнительные механизмы прямого действия (при повышении давления в рабочей полости шток удаляется от плоскости заделки мембраны) и обратного действия (шток приближается).

Для повышения точности и быстродействия пневматических ИУ при работе в тяжелых условиях (большое давление и повышенная вязкость регулируемой среды, большая длина пневматической соединительной линии и др.) их снабжают позиционерами.

Позиционеры служат для усиления мощности пневматического сигнала и обеспечения строгой пропорциональности между перемещением штока ИМ и давлением, соответствующем командному сигналу регулятора. Это своеобразные усилители с обратной связью по положению штока. Обязательными конструктивными элементами позиционера (рис. 85) являются чувствительный элемент (например, сильфон 1), пружина обратной связи 7, одним концом связанная со штоком ИМ, и золотниковое устройство 3, 4, в которое подается сжатый воздух от внешнего источника питания (например, компрессора). Командный сигналпоступает в сильфон 1, который преобразует этот сигнал в параметр, удобный для сравнения, — перемещение или усилие. Вид параметра сравнения предопределяет принцип действия позиционера — компенсация перемещений или компенсация сил. Большее распространение получил принцип компенсации сил, который легко реализуется конструктивно и обеспечивает высокую точность. Сравниваются усилие, создаваемое командным сигналом, и усилие, зависящее от текущего положения штока ИМ, создаваемое пружиной обратной связи 7. При рассогласовании этих сил чувствительный элемент управляет работой золотникового устройства, которое изменяет расход сжатого воздуха, направляемого из внешнего источника питания в верхнюю полость МИМ.



Рис. 85. Схема позиционера:

/ — сильфон; 2 — рычаг; 3

золотник; 4 — золотниковая камера; 5 — МИМ; 6 — тяга; 7— пружина обратной связи; 8— РО;— давление питания,— командный сигнал

Замечание

В динамическом отношении МИМ в области частот 0...0,3 рад/с рассматривают как последовательное соединение статического звена первого порядка с небольшой постоянной времени (порядка нескольких секунд) и усилительного звена (с зоной гистерезиса 2... 10 %). При длине пневмопровода более 100...150 м МИМ снабжают усилителями мощности и охватывают жесткой отрицательной обратной связью по перемещению РО. При использовании таких позиционеров МИМ рассматривают как статическое звено нулевого порядка (усилительное), не влияющее на динамические характеристики пневматического регулятора и системы управления в целом.

Поршневые ИМ отличаются большим конструктивным разнообразием и применяются в тех случаях, когда требуются большой ход штока и большие перестановочные усилия. В поршневой исполнительный механизм (см. рис. 6.84, 6) управляющий сигнал в виде давления сжатого воздуха подается в цилиндр и перемещает поршень 1, шток которого соединен с РО.

Гидравлические исполнительные механизмы

Предназначены для преобразования сигнала (разности давления масла), поступающего от регулятора, в перемещение РО. Выпускаются два типа гидравлических исполнительных механизмов: прямого хода (с поступательным движением штока) и кривошипные (с поворотным устройством).

Поршневые исполнительные механизмы прямого хода состоят из цилиндра с поршнем. Масло под высоким давлением подается в цилиндр и перемешает поршень, шток которого соединен со штоком РО. Входным сигналом поршневого ИМ, соответствующим командному сигналу регулятора, является объемный расход масла F, а выходным — перемещение штока h. Взаимосвязь между ними выражается уравнением:



где А — площадь поперечного сечения цилиндра.

Таким образом, поршневой гидравлический ИМ является интегрирующим звеном.

При соединении штока с кривошипом получается кривошипный ИМ, управляющий поворотными (заслоночными) регулирующими органами.

Пневматические и гидравлические ИМ обладают рядом преимуществ перед электрическими ИМ: высокой надежностью, большим ресурсом работы, возможностью плавного изменения выходных параметров в широком диапазоне, простотой преобразования энергии потока жидкости или газа в механическую мощность на выходе ИМ, устойчивостью к вибрации.

Электрические исполнительные механизмы

Устройства данного типа создают большие перестановочные усилия, монтируются на большом расстоянии от пульта управления, обеспечивают практически любой ход плунжера. К недостаткам можно отнести энергоемкость, сложность обслуживания, высокую стоимость для ИМ во взрывозащищенном исполнении. Работают в комплекте с электрическими регуляторами. Различают следующие виды электрических ИМ: электродвигательные и электромагнитные.

Электродвигательные ИМ состоят из электродвигателя (постоянной скорости, переменной скорости или шагового), редуктора с ручным дублером, контрольно-пусковой аппаратуры (указателя положения, датчика положения), приставки, формирующей перемещение выходного вала. В зависимости от типа ИМ те или иные блоки могут отсутствовать.

Наибольшее распространение получили электрические ИМ постоянной скорости, что обусловлено использованием простых и надежных электродвигателей, для управления которыми применяются простые и экономичные усилители мощности. В качестве электропривода в ИМ применяют асинхронные трехфазные двигатели, а также асинхронные однофазные двигатели с полым ротором и ротором типа «беличье колесо» (см. рис. 6.84, в). В таких ИМ ротор электродвигателя имеет постоянную мгновенную скорость вращения, а требуемый закон перемещения затвора регулирующего органа обеспечивается за счет повторно-кратковременного включения электродвигателя и соответствующего соотношения между длительностями включенного и выключенного состояний.

В электромагнитных ИМ усилие, необходимое для перестановки затвора РО, создается электромагнитом (см. рис. 84, г). Когда по катушке электромагнита / протекает ток, сердечник 2, соединенный с затвором РО, втягивается в электромагнит (индукционную катушку), открывая проход для рабочей среды. Если ток в катушке электромагнита отсутствует, пружина 3 выталкивает сердечник из электромагнита, и затвор РО перекрывает проход для рабочей среды. Электромагнитные ИМ применяются в основном в системах двухпозиционного регулирования и в системах защиты и блокировки, так как затвор регулирующего органа может занимать только два крайних положения (открыто-закрыто).

При установке электромагнитных ИМ на трубопроводах для жидкостей следует иметь в виду, что их практически мгновенное действие приводит к гидравлическим ударам.

Замечание

Пневматические и гидравлические ИУ имеют более высокую удельную мощность (мощность на единицу массы) по сравнению с электрическими ИУ с электронными, магнитными усилителями. Так, например, для пневматических и гидравлических ИУ она в среднем равна 10 кВт/кг, а для электромеханических — 1 кВт/кг. Как следствие этого, динамические характеристики пневматических и гидравлических ИУ превосходят соответствующие характеристики электромеханических систем.

3.4.3. Пьезокерамические исполнительные устройства

Хотя пьезоэффект был открыт в XIX веке, потом во второй половине XX века развиты теория и технология пьезокерамических материалов, полагают, что пьезокерамика станет одним из перспективных материалов XXI века. Действие пьезокерамических ИУ основано на принципе обратного пьезоэффекта: электрическая величина (напряжения или заряда) преобразуется в механическое перемещение (сдвиг) рабочего тела (преобразование электрической энергии в механическую). Пьезокерамические ИУ подразделяются на три основные группы: осевые, поперечные и гибкие. Осевые и поперечные пьезокерамические ИУ объединены общим названием многослойные пакетные, поскольку представляют собой несколько пьезоэлементов (дисков, стержней, пластин или брусков), собранных в пакет. Для многослойных пакетных ИМ характерно то, что они могут развивать значительное усилие (до 10 кН), при управляющем напряжении 1 кВ и очень малых отклонениях рабочей части (от единиц нанометров до сотен микрон). Многослойные пакетные ИУ относят к мощным.

Гибкие пьезокерамические ИУ (биморфы) развивают, как правило, незначительное усилие при малых (сотни микрон) отклонениях рабочей части, хотя известны пластинчатые биморфы (ленточные ИУ), обеспечивающие усилие до 0,25 кН при отклонении рабочей части до 3 мм. Гибкие ИУ относят к группе маломощных.

Перспективным направлением использования пакетных ИУ является управление гидравлическим клапанами.

Ленточные ИУ благодаря высокой чувствительности, относительно большому усилию и величине отклонения используются в качестве сенсорных выключателей и контакторов, закрывающих и открывающих клапанов различного назначения, в том числе для программируемой дозированной подачи (например, лекарств).

Дополнительная информация

К техническим средствам систем управления относят также разнообразные выходные устройства (устройства контактной коммутации) и усилительные устройства (усилители и распределители).

Выходные устройства предназначены для передачи командного сигнала на исполнительные механизмы (или на регистрирующие устройства).

К ним относятся:

  • релейные устройства (электромагнитное реле);

  • транзисторная оптопара;

  • симисторная оптопара.

Выходные устройства ключевого типа используются для управления нагрузкой либо непосредственно, либо через мощные управляющие элементы: пускатели, твердотельное реле, тиристоры (или симисторы).

Назначение усилительных устройств (усилителей и распределителей) САУ — усиление по мощности командного сигнала, поступающего с выхода регулятора, для управления исполнительным механизмом.

В зависимости от способа усиления командного сигнала, недостаточного для управлением двигателем механизма, электрические исполнительные механизмы подразделяются на механизмы с контактным и бесконтактным управлением. В первом случае управление производится с помощью реверсивного магнитного пускателя, а во втором — с помощью специального тиристорного или магнитного усилителя.

К группе электрических усилителей относят электромагнитные, электронные (транзисторные, тиристорные), магнитные и другие усилительные устройства.

В зависимости от типа распределительного элемента пневматические и гидравлические усилители классифицируются на распределители расхода и давления золотникового типа, распределители типа сопло—заслонка, распределители струйного типа.

  1. Особенности управления химико-технологическим процессом

  2. Понятие АСУТП

  3. Структура автоматизированного предприятия.

  4. Структура и функции АСУТП.

  5. Классы микропроцессорных комплексов

  6. Промышленная локальная сеть.

  7. Основные понятия управления химико-технологическими процессами. Основные термины и определения.

  8. Принципы управления. Управление по задающему воздействию

  9. Принципы управления. Управление по возмущающему воздействию

  10. Принципы управления. Управление по отклонению

  11. Принципы управления. Комбинированное управление

  12. Классификация систем управления. По характеру изменения задающего воздействия

  13. Классификация систем управления. По числу контуров

  14. Классификация систем управления. По числу управляемых величин

  15. Классификация систем управления. По характеру управляющих воздействий

  16. Классификация систем управления. По виду зависимости установившейся ошибки от внешнего воздействия

  17. Классификация систем управления. По энергетическим признакам

  18. Классификация систем управления. По математическому описанию

  19. Функциональная структура САР

  20. Государственная система промышленных приборов и средств автоматизации

  21. Основные термины и определения метрологии

  22. Физические величины Единицы физических величин

  23. Измерения физических величин Средства измерительной техники

  24. Принципы, методы и методики измерений Условия измерений

  25. Результаты измерений физических величин Погрешности измерений

  26. Измерительные преобразователи

  27. Структура измерительного преобразователя

  28. Промежуточные преобразователи

  29. Тензометрические преобразователи

  30. Емкостные преобразователи

  31. Пьезоэлектрические преобразователи

  32. Индуктивные преобразователи

  33. Преобразователи электрических сигналов

  34. Нормирующие преобразователи

  35. Аналоговые и цифровые преобразователи

  36. Измерение давления

  37. Жидкостные манометры

  38. Деформационные преобразователи давления

  39. Измерение температуры. Общие сведения об измерении температуры

  40. Измерение температуры контактным методом

  41. Термометры расширения

  42. Манометрические термометры

  43. Термоэлектрические преобразователи

  44. Термопреобразователи сопротивления

  45. Измерение температуры бесконтактным методом

  46. Яркостные пирометры

  47. Пирометры спектрального отношения

  48. Пирометры полного излучения

  49. Измерение расхода

  50. Расходомеры переменного перепада давления

  51. Расходомеры постоянного перепада давления

  52. Объемные расходомеры и счетчики

  53. Измерение расхода на основе тепловых явлений

  54. Электромагнитные расходомеры

  55. Вихревые расходомеры

  56. Ультразвуковые расходомеры

  57. Кориолисовы расходомеры

  58. Измерение уровня жидкости и сыпучих тел

  59. Механические уровнемеры

  60. Гидростатические и пьезометрические уровнемеры

  61. Кондуктометрические уровнемеры Емкостные уровнемеры

  62. Фотоэлектрические уровнемеры Ультразвуковые уровнемеры

  63. Измерение уровня с помощью радиоактивных изотопов Акустические уровнемеры

  64. Физические газоанализаторы

  65. Классификация объектов управления

  66. Свойства объектов управления

  67. Пропорциональный закон регулирования

  68. Интегральный закон регулирования

  69. Пропорционально-интегральный закон регулирования

  70. Пропорционально-дифференциальный закон регулирования

  71. Пропорционально-интегрально-дифференциальный закон регулирования

  72. Позиционные регуляторы

  73. Регулирование расхода

  74. Регулирование устройств для перемещения жидкостей и газов

  75. Регулирование уровня

  76. Регулирование давления

  77. Регулирование температуры

  78. Регулирование параметров состава и качества

  79. Регулирование типовых тепловых процессов

  80. Регулирование массообменных процессов

  81. Технические средства систем автоматического управления

  82. Основные разновидности управляющих устройств, применяемых в системах управления ХТП

  83. Регуляторы прямого действия

  84. Регуляторы непрямого действия

  85. Исполнительные устройства

  86. Регулирующие органы

  87. Исполнительные механизмы

  88. Пневматические исполнительные механизмы

  89. Гидравлические исполнительные механизмы

  90. Электрические исполнительные механизмы

  91. Пьезокерамические исполнительные устройства




1   ...   15   16   17   18   19   20   21   22   23


написать администратору сайта