Главная страница
Навигация по странице:

  • Рис. 87.

  • 8.4.2. Термоконвективные расходомеры

  • 8.4.3. Термоанемометры

  • 8.5. Электромагнитные расходомеры

  • 8.6. Вихревые расходомеры

  • Вихревые расходомеры с обтекаемым телом

  • 8.7. Ультразвуковые расходомеры

  • лекции по сухтп. В системы управления химикотехнологическими процессами значение автоматического управления для развития химической промышленности на современном этапе


    Скачать 2.38 Mb.
    НазваниеВ системы управления химикотехнологическими процессами значение автоматического управления для развития химической промышленности на современном этапе
    Анкорлекции по сухтп
    Дата20.03.2020
    Размер2.38 Mb.
    Формат файлаdoc
    Имя файла0753063_3909D_lekcii_po_suhtp.doc
    ТипЗакон
    #112655
    страница16 из 23
    1   ...   12   13   14   15   16   17   18   19   ...   23

    Рис. 86. Схема объемного счетчика с винтовой турбинкой, расположенной аксиально к потоку: / — винтовая турбинка; 2 — корпус; 3 —счетчик

    Рис. 87. Счетчик с турбинкой, расположенной тангенциально к потоку: / — турбинка; 2 — корпус; 3 — счетчик

    8.4. Измерение расхода на основе тепловых явлений

    Тепловыми расходомерами называют расходомеры, действие которых основано на измерении эффекта теплового воздействия на поток (или на тело, контактирующее с потоком), зависящего от расхода. Чаще применяются для измерения расхода газа и реже для измерения расхода жидкости. Тепловые расходомеры отличаются способом нагревания, расположением нагревателя (снаружи технологического трубопровода или внутри), а также характером функциональной связи между расходом и измеряемым сигналом. Основной способ нагревания — электрический омический. По характеру теплового взаимодействия тепловые расходомеры подразделяют на калориметрические, термоконвективные, термоанемометрические.

    У калориметрических и термоконвективных расходомеров измеряется разность температургаза или жидкости (при постоянной мощностинагревания) или же мощность(при). У термоанемометров измеряется сопротивлениенагреваемого тела (при постоянной силе тока ) или же сила тока(при ). Калориметрические и термоконвективные расходомеры измеряют массовый расход при условии неизменности теплоемкости измеряемого вещества, что является их достоинством. Другое достоинство термоконвективных расходомеров — отсутствие контакта с измеряемым веществом. Недостаток тех и других — инерционность.

    8.4.1. Калориметрические расходомеры

    Принцип работы калориметрических расходомеров основан на зависимости среднемассовой разности температур потока от мощности нагревания. Калориметрический расходомер (рис. 88, а) состоит из нагревателя 3, расположенного внутри трубопровода 4, и двух термопреобразователей 1 и 2 для измерения температур до нагревателя ипосле нагревателя. Термопреобразователи располагаются обычно на равных расстоянияхот нагревателя. Распределение температур по обе стороны от источника нагревания зависит от расхода вещества.

    Так как теплоемкость у жидкостей намного больше, чем у газов, то калориметрические расходомеры находят применение лишь для измерения очень малых расходов жидкостей. Основное назначение этих приборов — измерение расхода газа. Из-за малой надежности работы в эксплуатационных условиях нагревателей и термопреобразователей, располагаемых внутри трубопровода, калориметрические расходомеры применяют как образцовые приборы для поверки и градуировки расходомеров других типов.




    Рис. 88. Расходомеры:

    а — калориметрический; 6 — термоконвективный (1,2— термопреобразователи; 3 — нагреватель; 4 — трубопровод); — термоконвективный с совмещенными нагревателем и термопреобразователями (/ — двухсекционный нагреватель; 2 — трубопровод; 3 — измерительный прибор;— терморезисторы); г — распределение температур в стенке трубопровода в отсутствие (/) и при наличии расхода (2) среды

    8.4.2. Термоконвективные расходомеры

    Термоконвективными называются тепловые расходомеры, у которых и нагреватель, и термопреобразователь (термопара) располагаются снаружи трубопровода (рис. 88, б). Это существенно повышает эксплуатационную надежность расходомеров и делает их удобными для применения. Передача теплоты от нагревателя к измеряемому веществу осуществляется через стенку трубы за счет конвекции.

    Термоконвективные расходомеры, у которых нагреватель совмещен с термопреобразователями, обладают меньшей инерционностью.

    В схеме (рис. 88, в) нагреватель состоит из двух секций, являющихся одновременно терморезисторамии, включенными в мостовую схему с терморезисторамии . Они нагреваются током от стабилизированного источника напряжения ИПС. При отсутствии расхода среды распределение температур в стенке трубопровода представляет симметричная кривая / (рис. 88, г). При этом иравны и мост находится в равновесии. С появлением расхода среды температура и сопротивлениестановятся меньше температуры и сопротивления, а распределение температур соответствует кривой 2. С ростом расхода среды возрастает разность температур—, увеличивается разность потенциалов в точкахи, измеряемая прибором 3, шкала которого отградуирована в единицах расхода.

    Примечание

    В термоконвективных микрорасходомерах обычно применяют термометры сопротивления (медные, никелевые). В остальных типах термоконвективных расходомеров применяют термобатареи (последовательно соединенные медь-константановые или хромель-копелевые термопары) с числом спаев 8...30. Спаи термобатареи располагают в местах измерения температур и , и таким образом получаемая ТЭДС (1...10 мВ) соответствует разности температур. Спаи должны быть электрически изолированы от стенки трубы и в то же время их температура должна соответствовать температурам стенки. Для изоляции служат синтетические смолы и цемент. Сами же спаи и термоэлектроды должны иметь минимальные размеры.

    8.4.3. Термоанемометры

    Действие термоанемометров (рис. 89) основано на зависимости между потерей теплоты непрерывно нагреваемого тела (элемента), погруженного в поток, и скоростью газа (или жидкости). Поток газа или жидкости, обтекающий электрически обогреваемый чувствительный элемент, охлаждает его. При постоянной мощности нагревания температура чувствительного элемента (а при постоянной температуре — потребляемая им мощность) является мерой скорости потока.

    Достоинства: большой диапазон скоростей, высокое быстродействие, позволяющее измерять скорости, изменяющиеся с частотой в несколько тысяч герц.

    Недостатки: хрупкость первичных преобразователей вследствие динамических нагрузок и высокой температуры нагревания.

    Первичные преобразователи термоанемометров делятся на полупроводниковые (термисторы) и металлические, которые в свою очередь подразделяются на проволочные и пленочные.

    Чувствительный элемент проволочного преобразователя — тонкая и обычно короткая проволочка (термонить) из платины, вольфрама, никеля. Наибольшую температуру нагревания проволочки (до 1000 °С) допускает платина, а вольфрамовая проволочка допускает нагревание до 600 °С.



    Рис. 89. Термоанемометр:

    / — проволочный нагревательный элемент; 2 — трубопровод

    8.5. Электромагнитные расходомеры

    Среди известных и широко применяемых методов измерения расхода жидкостей в химической промышленности большое внимание заслуживает электромагнитный метод измерения.

    Принцип работы прибора с электромагнитным преобразователем расхода основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. Согласно закону Фарадея, в движущемся проводнике (например, жидкости) перпендикулярно силовым линиям магнитного поля наводится электродвижущая сила (ЭДС), пропорциональная скорости движения проводника:



    где Е — индуцируемая (наводимая) в проводнике ЭДС, В; В — магнитная индукция, Т;— длина проводника, м;— скорость движения проводника, м/с.

    В случае измерения расхода жидкости запишем:



    где D— внутренний диаметр трубопровода (расстояние между электродами), м; — средняя скорость протекания жидкости через поперечное сечение трубопровода в зоне наводимой ЭДС, м/с. Объемный расход жидкостиопределяем по формуле:



    где А — поперечное сечение трубопровода, м2.

    Подставив значение в уравнение, получим:



    или



    где

    Полученное выражение показывает, что значение выходной ЭДС прямо пропорционально значению объемного расхода жидкости.

    Итак, электромагнитный расходомер является по существу генератором, в котором проводником, перемешающимся в магнитном поле, служит электропроводная жидкость (коэффициент проводимости жидкости должен быть не менееСм/м).

    Принципиальная схема электромагнитного расходомера с постоянным магнитным полем приведена на рис. 90. Трубопровод / с перемещающейся в нем жидкостью помещают в магнитное поле. Трубопровод изготовляют из изоляционного материала (фторопласт, эбонит и т. п. в зависимости от свойств измеряемой жидкости). При необходимости трубопровод изготавливают из немагнитного металла (например, из немагнитной нержавеющей стали с большим удельным сопротивлением). В этом случае внутреннюю поверхность металлической трубы изолируют от жидкости специальным изоляционным материалом.

    В стенки трубопровода диаметрально противоположно в одном поперечном сечении вводят электроды 2, 3 («заподлицо» с внутренним диаметром трубопровода), изготовленные из нержавеющей стали. Электроды для съема выходной ЭДС тоже должны быть электрически изолированы от металлической трубы. К электродам подключают высокочувствительный измерительный прибор 6(например, потенциометр).

    Основным недостатком первичных электромагнитных преобразователей расхода с постоянным магнитным полем является поляризация электродов, характеризуемая появлением двойного слоя зарядов на границе электрод—жидкость. По мере накопления этих зарядов возникает ЭДС, направленная против основной измеряемой выходной ЭДС. Появление двойного электрического слоя, а следовательно, и противоэлектродвижущей силы нарушает стабильную работу измерительного блока. Чтобы уменьшить вредное воздействие поляризации электродов на полезный сигнал преобразователя расхода, постоянное магнитное поле заменяют на переменное.



    Рис. 90. Схема электромагнитного расходомера с постоянным магнитным полем: / — трубопровод; 2, 3 — электроды; 4 — постоянный электромагнит; 5 — усилитель; 6 — измерительный прибор



    Рис. 91. Схема электромагнитного расходомера с переменным магнитным полем: / — трубопровод; 2, 3 — электроды; 4 — переменный электромагнит; 5— промежуточный измерительный усилитель-преобразователь с унифицированным выходным сигналом постоянного тока 0...5 мА; 6 — измерительный прибор

    Принципиальная схема электромагнитного расходомера с переменным магнитным полем приведена на рис. 91. Требования, предъявляемые к материалам для изготовления трубы / и электродов 2 и 3 преобразователя расхода с переменным магнитным полем, аналогичны перечисленным выше требованиям к преобразователям расхода с постоянным магнитным полем.

    Комплект общепромышленного электромагнитного расходомера состоит из электромагнитного преобразователя расхода (конструктивно преобразователь состоит из трубы и постоянного или переменного электромагнита) и измерительного блока (например, потенциометра или милливольтметра).

    Достоинства электромагнитных преобразователей расхода: они не имеют движущихся частей, имеют минимальные потери давления. Практически безынерционны (по динамическим свойствам они могут быть представлены статическим звеном нулевого порядка), что очень важно при измерении быстроизменяющихся расходов, а также при их использовании в АСУ. Показания расходомера не зависят от свойств измеряемой жидкости (вязкости, плотности) и от характера потока (ламинарный, турбулентный). Поскольку зависимость наводимой ЭДС от расхода линейна, шкала измерительного прибора линейна.

    Электромагнитные расходомеры обеспечивают измерение расхода в диапазоне от 1 м3/ч до 2500 м3/ч и более в трубопроводах с внутренним диаметром от 10 мм до 300 мм при средней линейной скорости движения жидкостиот 0,6 м/с до 10 м/с и рассчитаны на максимальное избыточное давление до 1 ...2,5 МПа.

    В зависимости от типа покрытия внутренней поверхности трубы преобразователя расхода электромагнитные расходомеры могут применяться для измерения расхода различных электропроводных жидкостей (абразивных жидкостей, суспензий, кислот, пульп и т. д.), имеющих температуру от —40 °С до +150 °С.

    Примечание

    Пульпа представляет собой двухфазный поток, одна фаза которого является жидкостью, а другая состоит из твердых частиц; содержание последних по массе может составлять 50...90 %.

    8.6. Вихревые расходомеры

    Любое препятствие, помещенное в поток, создает завихрение в нем вещества, пропорциональное его объемному расходу. В такого рода преобразователях используются два способа генерирования завихрений: естественные колебания (рис. 92), при которых стабильные структуры (известные как вихревая дорожка Кармана) периодических вращающихся в разные стороны вихрей возникают в потоке за препятствием, и вынужденные колебания (рис. 93), при которых поток вещества вращается или прецессирует (движение оси вращения потока) вдоль оси трубопровода в виде некоторой спирали.

    Вихревые расходомеры с обтекаемым телом

    Тело, находящееся на пути потока, изменяет направление движения обтекающих его струй и увеличивает их скорость за счет соответствующего уменьшения давления. За миделевым сечением тела начинается обратный процесс уменьшения скорости и увеличения давления. Одновременно с этим на передней стороне тела создается повышенное, а на задней стороне — пониженное давление. Пограничный слой, обтекающий тело, пройдя его миделевое сечение, отрывается от тела и под влиянием пониженного давления изменяет направление движения, образуя вихрь. Это происходит как в верхних, так и в нижних точках обтекаемого тела. Но так как развитие вихря с одной стороны препятствует развитию вихря с другой стороны, то образование вихрей с той и с другой стороны происходит поочередно (см. рис. 5.92). При этом за обтекаемым телом образуется вихревая дорожка Кармана.



    Рис. 92. Схема вихревого расходомера с генерированием вихревой дорожки Кармана на цилиндрическом препятствии: / — трубопровод; 2 — цилиндрическое препятствие; 3 — измерительный преобразователь

    Примечание

    Миделевое сечение (мидель) (от голл. middel— средний) — наибольшее по площади сечение тела плоскостью, перпендикулярной направлению движения.

    Частота срыва вихрей 1, согласно критерию Струхаля Sh, равна



    т. е. пропорциональна отношению, а следовательно, при постоянном характерном размере dтела пропорциональна скорости v, a значит и объемному расходу . Зависимость между идается уравнением



    где А — площадь наименьшего поперечного сечения потока вокруг обтекаемого тела.

    Чтобы обеспечить пропорциональность междуичисло Струхаля Sh должно оставаться неизменным в возможно большей области значений числа Re. Для обтекаемого цилиндра число Sh остается постоянным в области

    Замечание

    Преимущественное применение в вихревых расходомерах нашли призматические тела прямоугольной, треугольной или трапецеидальной (дельтообразной) форм. Отсюда идет название вихревого измерителя расхода — дельта метр.

    Имеется много способов преобразования вихревых колебаний в выходной сигнал. Они основаны на использовании периодических колебаний давления или скорости струй с обеих сторон обтекаемого тела. В качестве чувствительного элемента преобразователя применяются один или два полупроводниковых термоанемометра, тензометрические преобразователи силы или ультразвуковые средства для определения периодических изменений силы, происходящих при вихревом движении вещества.

    Снаружи трубопровода размещен излучатель, а с другой стороны — приемник ультразвуковых колебаний, реагирующие на вихревые колебания потока. Этот метод имеет свои достоинства, но присутствие в жидкости твердых частиц или газовых пузырьков будет сказываться на выходном сигнале.

    Замечание

    Вихревые расходомеры с телом обтекания треугольного трапецеидального и квадратного типов предназначены для труб диаметром Dот 50 мм до 300 мм.

    8.7. Ультразвуковые расходомеры

    Действие ультразвуковых расходомеров основано на зависимости от расхода вещества разности времен прохождения ультразвуковых сигналов по потоку вещества и против него. Измеряется время прохождения ультразвукового сигнала от одного излучателя до приемника по направлению течения вещества (например, жидкости), так и против его течения. Разница во времени прохождения ультразвукового сигнала будет прямо пропорциональна скорости потока вещества, а знак этой разности покажет направление потока.

    В трубопроводе на его внешней поверхности устанавливаются два первичных измерительных преобразователя-излучателя ультразвуковых колебаний и два их приемника (частота ультразвуковых колебаний составляет 1...3 МГц). При скорости ультразвука с длительность прохождения импульса в неподвижной жидкости, находящейся в трубопроводе, составит



    где— расстояние между излучателями и приемниками ультразвуковых колебаний.

    При перемещении жидкости со скоростью vвремя прохождения ультразвука по направлению потокаи навстречу емуравно:



    откуда разность времен прохождения импульсов по потоку и против потока, учитывая, что

    (5.104)



    Рис. 94. Двухканальная схема ультразвукового преобразователя:

    / — излучающий пьезоэлемент; 2 — приемные пьезоэлементы

    Основными элементами преобразователей являются пьезоэлементы, преобразующие переменное электрическое напряжение в ультразвуковые колебания среды. Часто применяются кольцевые пьезопреобразователи, создающие не направленное, а сферическое излучение. Может быть реализована одноканальная схема ультразвукового преобразователя, в которой каждый из двух пьезоэлементов по очереди излучает и принимает акустические колебания. На рис. 5.94 представлена двухканальная схема ультразвукового преобразователя, на которой средний пьезоэлемент является излучающим, а два крайних — приемными.

    Замечание

    Существуют различные способы измерения очень малого значения разности времен, например фазовый, при котором измеряется разность фазовых сдвигов акустических колебаний, направляемых по потоку и против него (фазовые расходомеры), или частотный, при котором измеряется разность частот повторения коротких импульсов (или пакетов) акустических колебаний, направляемых по потоку и против него (частотные расходомеры).

    Ультразвуковые расходомеры обычно измеряют среднюю по диаметру, а не среднюю по сечению трубопровода скорость потока (в силу чего предъявляются высокие требования к длинам прямых участков перед расходомерами).

    Как правило, ультразвуковые расходомеры измеряют объемный расход.

    Достоинства: ультразвуковые расходомеры не создают препятствий для потока, и, как следствие этого, падения давления в трубопроводе малы (минимальные потери давления); не имеют движущихся частей; обладают возможностью достижения высокой точности измерений и высоким быстродействием. Важное преимущество преобразователей с внешними пьезоэлементами — это отсутствие контакта с измеряемым веществом и сохранение целостности трубопровода.

    Недостатки: методические ограничения (влияние пузырьков, механических частиц, приводящих к возможности засора излучателя и приемника, находящихся внутри трубопровода). Для преобразователей с внешними пьезоэлементами трубопровод создает повышенный уровень паразитных сигналов и помех, вызванных прохождением акустических колебаний по стенке трубопровода, что снижает чувствительность преобразователей.

    Основные источники погрешностей: неправильный учет влияния профиля скорости; изменение скорости ультразвука в измеряемой среде; паразитные акустические сигналы; асимметрия электронно-акустических каналов.

    Основные погрешности, %: 1...5.

    Применение: для больших диапазонов измерения расхода незагрязненного газа.

    Замечание

    В процессе эксплуатации ультразвуковых расходомеров необходимо систематически проверять электрическое сопротивление изоляции цепи питания преобразователя и соотношение «сигнал/шум» входного сигнала. Снижение этого сигнала свидетельствует либо об ухудшении характеристик расходомера, либо о загрязнении отверстий излучателя и приемника.
    1   ...   12   13   14   15   16   17   18   19   ...   23


    написать администратору сайта