Главная страница
Навигация по странице:


  • В современном обществе локальные вычислительные сети стали неотъемлемой частью жизни


    Скачать 3.1 Mb.
    НазваниеВ современном обществе локальные вычислительные сети стали неотъемлемой частью жизни
    Дата28.12.2022
    Размер3.1 Mb.
    Формат файлаrtf
    Имя файла1173055.rtf
    ТипПрограмма
    #867879

    Размещено на http://www.allbest.ru/

    Введение
    В современном обществе локальные вычислительные сети стали неотъемлемой частью жизни. Назначение локальной сети - осуществление совместного доступа к данным, программам и оборудованию.

    В качестве классифицирующих признаков ЛВС используются такие категории, как сфера применения, функциональное назначение, размеры, вид трафика, топология, физическая среда, метод доступа к среде, используемое программное обеспечение. Такие огромные потенциальные возможности которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право не принимать это к разработке и не применять их на практике.

    Существует много приложений, требующих удаленного доступа к базам данных. Простыми примерами являются информационные и финансовые службы, доступные пользователям персональных ЭВМ.

    В промышленности средствам связи уделяется большое внимание системам передачи данных на большие расстояния. Индустрия глобальных сетей развивается и занимает прочные позиции. Локальные сети являются относительно новой областью средств передачи данных.

    Объектом исследования являются локальные вычислительные сети, предметом исследования является проектирование участка локальной вычислительной сети для доступа к ресурсам DMZ.

    Задачи работы:

    • Теоретическое обоснование построение вычислительной локальной сети;

    • Проработка предпосылок и условий для создания вычислительной сети;

    • Создание проекта вычислительной локальной сети.



    1. Общая часть
    1.1 Принципы построения локальной вычислительной сети
    Все сети имеют некоторые общие компоненты, функции характеристики. В их числе:

    • серверы компьютеры, предоставляющие свои ресурсы сетевым пользователям;

    • клиенты компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым серверами;

    • среда передачи способ соединения компьютеров;

    • совместно используемые данные – файлы, предоставляемые серверами по сети;

    • совместно используемые периферийные устройства, например принтеры, библиотеки CD-ROM и т.д., - ресурсы, предоставляемые серверами;

    • ресурсы файлы, периферийные устройства и другие элементы, используемые в сети.


    1.2 Два типа сетей
    Несмотря на отмеченное сходство, сети разделяются на два типа:

    • одноранговые;

    • на основе сервера.

    Различия между одноранговыми сетями и сетями на основе сервера принципиальны, поскольку предопределяют разные возможности этих сетей. Выбор типа сети зависит от многих факторов:

    • размера предприятия;

    • необходимой степени безопасности;

    • вида бизнеса;

    • доступности административной поддержки;

    • объёма сетевого трафика;

    • потребностей сетевых пользователей;

    • уровня финансирования.

    Одноранговые локальные сети

    В сетях без централизованного управления (часто их называют одноранговыми сетями — peer-to-peer) нет единого центра управления взаимодействием рабочих станций и нет единого устройства для хранения данных.

    Функции управления сетью передаются от одной станции к другой. Сетевая операционная система распределена по всем рабочим станциям (на каждом компьютере должны быть программные средства администрирования сети). Каждая станция сети может выполнять функции как клиента, так и сервера. Она может обслуживать запросы от других рабочих станций и направлять свои запросы на обслуживание в сеть.

    Пользователю сети доступны все периферийные устройства, подключенные к другим станциям (магнитные и оптические диски, принтеры, сканеры, плоттеры и т. д.).

    Но отсутствие серверов в сети не позволяет администратору централизованно управлять ресурсами. Каждый компьютер, включенный в одноранговую сеть, имеет свои собственные сетевые программные средства, а необходимость прямого взаимодействия компьютеров друг с другом по мере расширения системы приводит к слишком большому количеству связей между рабочими станциями. Эффективно управлять такой системой практически невозможно.

    Достоинства одноранговых сетей:

    1. низкая стоимость;

    2. высокая надежность.

    3. Недостатки одноранговых сетей:

    4. возможность подключения небольшого числа рабочих станций (не более 10);

    5. сложность управления сетью;

    6. трудности обновления и изменения программного обеспечения станций;

    7. сложность обеспечения защиты информации.

    Одноранговые сетисоздаются на базе таких сетевых операционных систем, как Artisoft LANtastic, Novell NetWare Lite, оболочки MS Windows for Workgroups.

    Серверные локальные сети

    В сетях с централизованным управлением (часто их называют двухранговыми или серверными сетями)один из компьютеров (сервер) реализует процедуры, предназначенные для использования всеми рабочими станциями, управляет взаимодействием рабочих станций и выполняет целый ряд сервисных функций. В процессе обработки данных клиент может сформировать запрос на сервер для выполнения тех или иных процедур: чтение файла, поиск информации в базе данных, печать файла и т. п.

    Сервер выполняет запрос, поступивший от клиента. Результаты выполнения запроса передаются клиенту. Сервер обеспечивает хранение данных общего использования, организует доступ к этим данным и передает данные клиенту. Клиент обрабатывает полученные данные и представляет результаты обработки в виде, удобном для пользователя. Обработка данных может быть выполнена и на сервере.

    Следует отметить, что в серверных сетях клиенту непосредственно доступны ресурсы сети, имеющиеся только на сервере (серверах, если имеется несколько специализированных серверов). Данные и программы, хранящиеся на дисках чужих рабочих станций, могут быть доступны пользователю только через сервер или с помощью, установленной в сети специальной программы доступа к ресурсам рабочих станций.

    Системы, в которых сервер выполняет только процедуры организации, хранения и выдачи клиентам нужной информации, называются системами «файл-сервер» или сетями с выделенным сервером; те же системы, в которых на сервере наряду с хранением выполняется и содержательная обработка информации, принято называть системами «клиент-сервер».

    В системе «клиент-сервер» сервер играет активную роль: он не просто выдает на запрос весь файл, а может предварительно обработать информацию и выдать клиенту результаты решения задачи или отобрать именно те записи файла, которые и интересуют клиента, в удобном для клиента представлении. Такая технология, кроме всего прочего, способствует и меньшей загрузке каналов связи сети.

    Клиент-серверные системы иногда подразделяют также на две группы:

    • системы, в которых клиент, решая свои задачи на сервере, использует свое прикладное программное обеспечение (такие системы часто называют системами с толстым клиентом);

    • системы, в которых клиент, решая свои задачи на сервере, прибегает к прикладному программному обеспечению, размещенному на сервере (такие системы обычно называют системами с тонким клиентом); типичным примеромэтих систем являются ЛВС, где в качестве рабочих станций выступают сетевые компьютеры.

    Сервер, работающий по технологии «файл-сервер», сам называется файл-сервером; работающий по технологии «клиент-сервер» — сервером приложений.

    Достоинства серверных локальных вычислительных сетей:

    • отсутствие ограничений на число рабочих станций;

    • простота управления по сравнению с одноранговыми сетями;

    • высокое быстродействие;

    • надежная система защиты информации.

    Недостатки серверных локальных вычислительных сетей:

    • высокая стоимость из-за выделения одного или нескольких компьютеров под сервер;

    • зависимость быстродействия и надежности сети от сервера;

    • меньшая гибкость по сравнению с одноранговой сетью.

    Серверные сети являются весьма распространенными; примеры сетевых операционных систем для таких сетей: LAN Manager (Microsoft), Token Ring (IBM) и NetWare (Novell).

    Сети на основе сервера

    Если к одноранговой сети, где компьютеры выступают в роли и клиентов, и серверов, подключить более 10 пользователей, она может не справиться с объёмом возложенных на неё задач. Поэтому большинство сетей имеют другую конфигурацию – они работают на основе выделенного сервера (рис. 1.3). Выделенным сервером называется такой сервер, который функционирует только как сервер и не используется в качестве клиента или рабочей станции. Он оптимизирован для быстрой обработки запросов от сетевых клиентов и для повышения защищённости файлов и каталогов. Сети на основе сервера стали промышленным стандартом.


    Рисунок 1.3. Сеть на основе сервера.
    При увеличении размера сети и объёмов сетевого графика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться наиболее эффективно.

    Основным аргументом, определяющим выбор сети на основе сервера, является, как правило, надёжность защиты данных. В таких сетях, как Windows NT, проблемами безопасности может заниматься один администратор: он формирует единую политику безопасности и применяет её в отношении каждого сетевого пользователя.

    Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, управлять было бы невозможно.
    1.3 Обзор топологии сетей
    Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология – это стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина «топология», для описания физической компоновки употребляют также следующее:

    • физическое расположение;

    • компоновка;

    • диаграмма;

    • карта.

    Топология сети обуславливает её характеристики. В частности, выбор той или иной топологии влияет:

    • на состав необходимого сетевого оборудования;

    • характеристики сетевого оборудования;

    • возможности расширения сети;

    • способ управления сетью.

    Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.

    Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Разные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

    Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.

    Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

    Все сети строятся на основе трёх базовых топологий:

    • шина;

    • звезда;

    • кольцо.

    Если компьютеры подключены вдоль одного кабеля (сегмента), топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология называется кольца.

    Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

    Топологию «шина» часто называют «линейной шиной». Данная топология относится к наиболее простым и широко распространённым топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети (рис. 1.4).

    В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Что бы понять процесс взаимодействия компьютеров по шине, необходимо уяснить следующие понятия:

    • передача сигнала;

    • отражение сигнала;

    • терминатор.



    Рисунок 1.4. Простая сеть с топологией «шина»
    Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах (рис.1.5). Причём в каждый момент времени только один компьютер может вести передачу.


    Рисунок 1.5. Данные посылаются всем компьютерам, но принимает их только адресат
    Так как данные в сеть передаются лишь одним компьютером, е производительность зависит от количества компьютеров, подключённых к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее работает сеть.

    Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

    • характеристики аппаратного обеспечения компьютеров в сети;

    • частота, с которой компьютеры передают данные;

    • тип работающих сетевых приложений;

    • тип сетевого кабеля;

    • расстояние между компьютерами в сети.

    Шина – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе стальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

    Данные, или электрические сигналы, распространяются по всей сети – от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

    Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы, поглощающие эти сигналы.

    Все концы сетевого кабеля должны быть к чему-нибудь подключены, например, к компьютеру или к баррел-коннектору – для увеличения длины кабеля. К любому свободному – не подключённому – концу кабеля должен быть подсоединён терминатор, чтобы предотвратить отражение электрических сигналов.

    Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

    Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

    Увеличение участка, охватываемого сетью, вызывает необходимость её расширения. В сети с топологией «шина» кабель обычно удлиняется двумя способами. вычислительный сеть сервер кабель

    1. Для соединения двух отрезков кабеля можно воспользоваться баррел-коннектором. Но злоупотреблять ими не стоит, так как сигнал при этом ослабевает. Лучше купить один длинный кабель, чем соединять несколько коротких отрезков. При большом количестве «стыковок» нередко происходит искажение сигнала.

    2. Для соединения двух отрезков кабеля служит репитер. В отличие от коннектора, он усиливает сигнал перед передачей его в следующий сегмент. Поэтому предпочтительнее использовать репитер, чем баррел-коннектор или даже один длинный кабель: сигналы на большие расстояния пойдут без искажений. Топологи звезда

    При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (рис. 1.6). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

    В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети.

    А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.



    Рисунок 1.6. Простая сеть с топологией «звезда»
    Топология кольцо

    При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор (рис. 1.7). Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.


    Рисунок 1.7. Простая сеть с топологией «кольцо»
    Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передаётся до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

    Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных.

    После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получив подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть.

    На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10000 оборотов в секунду.


    Рисунок 1.8. Сеть с топологией «звезда-шина»
    Комбинированные топологии

    В настоящее время часто используются топологии, которые комбинируют компоновку сети по принципу шины, звезды и кольца.

    Звезда-шина – это комбинация топологий «шина» и «звезда». Чаще всего это выглядит так: несколько сетей с топологией «звезда» объединяются при помощи магистральной линейной шины (рис.1.8).

    В этом случае выход из строя одного компьютера не оказывает никакого влияния на сеть – остальные компьютеры по-прежнему взаимодействуют друг с другом. А выход из строя концентратора повлечёт за собой остановку подключённых к нему компьютеров и концентраторов.

    Звезда-кольцо кажется несколько похожей на звезду-шину. И в той, и в другой топологии компьютеры подключены к концентратору, который фактически и формирует кольцо или шину. Отличие в том, что концентраторы в звезде-шине соединены магистральной линейной шиной, а в звезде-кольце на основе главного концентратора они образуют звезду.


    Рисунок 1.9. Сеть с топологией «звезда-кольцо»
    Основные этапы проектирования ЛВС

    Перед выполнением работ по монтажу ЛВС проводятся мероприятия по разработке и проектированию локальных сетей. К этому процессу могут привлекаться различные специалисты, которые должны учесть все конструктивные особенности здания и отдельных помещений, где планируется прокладка ЛВС.

    В результате получают технический проект, составленный
    в соответствии с нормами и правилами, принятыми в РФ. Он включает схему монтажа локальной сети, описание ее основных характеристик, с указанием регламентирующих их нормативных документов.

    Осуществляя проектирование локальных сетей, особое внимание следует уделять обеспечению защиты информации. Необходимый уровень безопасности достигается использованием специализированного программного и аппаратного обеспечения.

    Профессиональное проектирование компьютерных сетей предусматривает устройство закрытых помещений для серверов, распределительных устройств и др.

    Важно ограничить или же полностью предотвратить любое вмешательство в работу аппаратных средств сети.

    Также проектирование ЛВС должно учитывать применение антивирусного ПО и программ для пресечения несанкционированного доступа.

    Это необходимо для общей оценки информационной безопасности ЛВС и определения конечной стоимости работ.

    Любое проектирование, как известно, представляет собой сильно упрощенное моделирование еще не наступившей действительности. Именно поэтому предусмотреть все возможные факторы, учесть все потребности, которые могут возникнуть в будущем, практически невозможно. Итак, даже самые подробные руководства по проектированию имеют не слишком большую ценность.

    Однако общие подходы к проектированию локальных компьютерных сетей все-таки могут быть сформулированы, некоторые полезные принципы такого проектирования предлагаются и с успехом используются. Не стоит только воспринимать их как нечто пригодное для любых практических случаев и учитывающее все возможные ситуации.

    На рис. 2.0 приведена примерная последовательность этапов и варианты выбора при проектировании локальной сети. Вообще, проблема выбора одного из многочисленных вариантов при проектировании ЛС является основной для данного раздела.

    Выбор затрудняет необходимость учета множества требований, иногда противоречивых (например, обеспечение высоких технических характеристик сети при доступной стоимости), а также настойчивая, порой агрессивная реклама отдельных решений.

    Последнее часто относится к новейшим вариантам сетевого оборудования и/или программного обеспечения, отнюдь не самым доступным по цене и не всегда имеющим значительные преимущества по техническим характеристикам перед опробованными вариантами.

    2.0. Примерная последовательность этапов и варианты выбора при проектировании ЛС

    Цель данного раздела состоит в том, чтобы сформулировать объективные критерии выбора конкретных решений при проектировании ЛС, опираясь на материал предыдущих разделов.

    Не все этапы проектирования, перечисленные на рис.2.0 , будут далее рассматриваться. Так, организация силовой электрической сети (п. 5), актуальна в относительно редких случаях. Например, если сеть размещается в новом здании или производится капитальный ремонт, то возникает необходимость организации силовой электрической сети "по всем правилам".

    Многие из этих правил в отечественных условиях реализуются нечасто (или возможность их реализации ограничена по техническим причинам). Не вдаваясь в излишние подробности, следует упомянуть необходимость организации полноценной системы заземления оборудования (что означает использование не двух-, а трехполюсных розеток, причем один из полюсов должен быть подключен к шине физического заземления) и обеспечение мер электробезопасности.

    Другой этап, который также не будет далее детализироваться, это этап 6 (установка сетевых карт, активных сетевых устройств, сетевой ОС и других сетевых программных средств). С одной стороны, усилиями разработчиков компьютерного оборудования и программных средств, процедура их инсталляции максимально упрощена (режим plug-and-play, пошаговые инструкции по инсталляции).

    С другой же, в особо сложных случаях (например, при установке, настройке и последующей поддержке сети на основе выделенного сервера ) может потребоваться либо приглашение стороннего специалиста, либо (что предпочтительнее) работа штатного системного администратора. Работы по инсталляции носят разовый характер, а специфический и не малый объем сведений и навыков, которыми должен обладать системныйадминистратор, делают целесообразным изучение соответствующего раздела в рамках отдельного курса (как это и происходит на практике). Тем не менее, некоторые общие принципы системного администрирования рассмотрены в разделе "Выбор сетевых программных средств".


    написать администратору сайта