|
Лекции по бх. Втретьих, биохимия оказывает все более глубокое воздействие на медицину
Процессинг РНК Все виды РНК синтезируются в виде предшественников и нуждаются в процессинге (созревании).
Процессинг мРНК начинается с кэпирования. Фермент гуанилилтрансфераза гидролизует макроэргическую связь в молекуле ГТФ и присоединяет нуклеозиддифосфатный остаток 5-фосфатной группой к 5-концу пре-мРНК с образованием 5,5-фосфодиэфирной связи. Последующее метилирование остатка гуанина в составе ГТФ с образованием N7-метилгуанозина завершает образование кэпа. Модифицированный 5-конец удлиняет время жизни мРНК, защищая её от действия 5-экзонуклеаз в цитоплазме. Кэпирование важно для обеспечения инициации трансляции, так как инициирующие кодоны распознаются рибосомой только если присутствует кэп. Наличие кэпа необходимо для работы ферментной системы, обеспечивающей удаление интронов.
3-конец пре-мРНК также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется полиА-последовательность, состоящая из 100-200 остатков адениловой кислоты. Наличие полиА-«хвоста» облегчает выход мРНК из ядра и замедляет её гидролиз в цитоплазме. Ферменты, осуществляющие кэпирование и полиаденилирование, избирательно связываются с РНК-полимеразой II, и в отсутствие полимеразы неактивны.
Первичный транскрипт представляет собой строго комплементарную матрице нуклеиновую кислоту, содержащую как кодирующие участки – экзоны, так и некодирующие – интроны. В ходе дальнейших стадий процессинга последовательности интронов «вырезаются» из первичного транскрипта, концы экзонов соединяются друг с другом. Такая модификация РНК называется сплайсингом. В результате сплайсинга из первичных транскриптов образуются молекулы «зрелой» мРНК.
Для некоторых генов описаны альтернативные пути сплайсинга и полиаденилирования одного и того же первичного транскрипта. Разные варианты сплайсинга могут приводить к образованию разных изоформ одного и того же белка. Например, ген тропонина состоит из 18 экзонов и кодирует многочисленные изоформы этого мышечного белка, которые образуются в тканях на разных стадиях их развития.
Процессинг тРНК заключается в формировании 3-конца, удалении единственного интрона и модификациях азотистых оснований. Формирование акцепторного конца катализирует РНК-аза, представляющая собой 3-экзонуклеазу, поочередно удаляющую нуклеотиды до достижения последовательности ЦЦА, одинаковой для всех тРНК. Для некоторых тРНК формирование последовательности ЦЦА происходит в результате присоединения этих нуклеотидов.
Процессинг рРНК. Гены рРНК транскрибируются РНК-полимеразой I с образованием идентичных первичных транскриптов (45S рРНК). В результате процессинга из этого предшественника образуются 3 типа рРНК: 18S, входящая в состав малой субъединицы рибосом, а также 28S и 5,8S, локализующиеся в большой субъединице. Остальная часть транскрипта разрушается в ядре. 5S рРНК большой субъединицы транскрибируется отдельно.
Обратная транскрипция
Некоторые РНК-содержащие вирусы (вирус саркомы Рауса, ВИЧ) обладают уникальным ферментом – РНК-зависимой ДНК-полимеразой, часто называемой обратной транскриптазой или ревертазой. Этот фермент обладает время активностями. Первая из них – РНК-зависимая ДНК-полимеразная. Она обеспечивает синтез одноцепочечной комплементарной ДНК на матрице РНК. Вторая – рибонуклеазная активность, обеспечивающая удаление цепи РНК. Третья активность – ДНК-зависимая ДНК-полимеразная, обеспечивающая синтез второй цепи ДНК.
В результате образуется ДНК которая содержит гены, обуславливающие развитие рака (онкогены). Эта ДНК встраивается в геном эукариотической клетки, где может в течение многих поколений оставаться в скрытом состоянии. При определенных условиях такие гены могут активироваться и вызвать репликацию вируса, при других же условиях они могут способствовать перерождению такой клетки в раковую. Вирусы с таким механизмом размножения индуцируют развитие опухолей у животных и человека, поэтому их еще называют онкогенными вирусами (Рис. 6.5.).
Лекция 7
Завершающий этап реализации генетической информации, заключающийся в синтезе полипептидных цепей на матрице мРНК, называется трансляцией. В результате этого процесса генетическая информация с языка последовательности нуклеотидов в мРНК переводится (транслируется) на язык последовательности аминокислот в молекуле белка. Роль своеобразного «словаря» при этом переводе выполняет генетический код. Это свойственная всем живым организмам единая система записи наследственной информации в виде нуклеотидной последовательности, которая определяет порядок включения аминокислот в синтезирующуюся полипептидную цепь. Для генетического кода характерны следующие свойства:
- триплетность – каждая аминокислота кодируется тремя нуклеотидами;
- универсальность – код одинаков для всех организмов;
- однозначность (специфичность) – каждому кодону соответствует только одна определенная аминокислота;
- вырожденность – возможность кодирования одной и той же аминокислоты несколькими кодонами;
- тнеперекрываемость – кодоны считываются последовательно, один за другим, не перекрываясь;
- однонаправленность - декодирование мРНК осуществляется в направлении 53;
- колинеарность – соответствие последовательности аминокислот в белке последовательности нуклеотидов в зрелой мРНК;
- существование нескольких типов кодонов – инициирующего (АУГ), смысловых и терминирующих (УАА, УАГ, УГА).
Для осуществления синтеза белка необходимо согласованное взаимодействие большого числа компонентов. Синтез белка происходит в несколько стадий:
- подготовка к синтезу, заключающаяся в активации аминокислот и образовании аминоацил-тРНК;
- собственно трансляция, состоящая из этапов инициации, элонгации и терминации;
- посттрансляционная модификация белка.
Активация аминокислот
На стадии подготовки к синтезу каждая из 20 протеиногенных аминокислот присоединяется α-карбоксильной группой к 2- или 3-гидроксильному радикалу акцепторного конца соответствующей тРНК с образованием сложноэфирной связи. Эти реакции, происходящие в цитозоле, катализирует семейство аминоацил-тРНК-синтетаз (аа-тРНК-синтетаз). Каждый фермент этого семейства узнаёт только одну определенную аминокислоту и те тРНК, которые способны связаться с этой аминокислотой. Аминоацил-тРНК-синтетазы активируют аминокислоты в 2 стадии. В ходе первой аминокислота присоединяется к ферменту и реагирует с АТФ с образованием богатого энергией промежуточного соединения – аденилата. На второй стадии аминокислотный остаток аминоациладенилата, оставаясь связанным с ферментом, взаимодействует с молекулой соответствующей тРНК с образованием аминоацил-тРНК. Энергия, заключенная в макроэргической связи аминоацилтРНК, впоследствии используется на образование пептидной связи в ходе синтеза белка.
Высокая специфичность аа-тРНК-синтетаз в связывании аминокислоты с соответствующими тРНК лежит в основе точности трансляции генетической информации. В активном центре этих ферментов есть 4 специфических участка для узнавания: аминокислоты, тРНК, АТФ и четвертый – для присоединения молекулы Н2О, которая участвует в гидролизе неправильных аминоациладенилатов. То есть, в активном центре этих ферментов существует корректирующий механизм, обеспечивающий немедленное удаление ошибочно присоединенного аминокислотного остатка.
Аминокислота, присоединяясь к тРНК, в дальнейшем не определяет специфических свойств аа-тРНК, её структуру не узнает ни рибосома, ни мРНК. И участие конкретной аминокислоты в синтезе белка зависит только от структуры тРНК, а точнее, от комплементарного взаимодействия антикодона аминоацил-тРНК с кодоном мРНК. Иными словами, молекулы тРНК в синтезе белка играют роль адапторов, т.е. приспособлений, при помощи которых аминокислоты включаются в определенном порядке в растущую полипептидную цепь.
Синтез белка у эукариот
В ходе синтеза белка считывание информации с мРНК идет в направлении от 5- к 3-концу, обеспечивая синтез пептида от N- к C-концу. События на рибосоме включают этапы инициации, элонгации и терминации (Рис.7.1.).
Инициация трансляции представляет собой процесс, в ходе которого происходит образование комплекса, включающего инициирующую метионил-тРНК (мет-тРНКi), мРНК и рибосому. В этом процессе участвуют не менее 10 факторов инициации (eIF). Первоначально 40S субъединица рибосомы соединяется с фактором инициации, который препятствует её связыванию с 60 S субъединицей, но стимулирует объединение с мет-тРНКi, ГТФ и другим фактором инициации. Этот сложный комплекс связывается с 5-концом мРНК при участии нескольких eIF, один из которых присоединяется к кэп-участку. Прикрепившись к мРНК, 40S субъединица начинает скользить по некодирующей части мРНК до тех пор, пока не достигнет инициирующего кодона АУГ кодирующей нуклеотидной последовательности. Скольжение 40S субъединицы по мРНК сопровождается гидролизом АТФ, энергия которого затрачивается на преодоление участков спирализации в нетранслируемой части мРНК.
Достигнув начала кодирующей последовательности мРНК, 40S субъединица останавливается и связывается с другими факторами инициации, ускоряющими присоединение 60S субъединицы и образование 80S рибосомы за счет гидролиза ГТФ. При этом формируются А (аминоацильный) и Р (пептидильный) центры рибосомы, причем в Р-центре оказывается кодон АУГ с присоединенной к нему мет-тРНКi.
Элонгация. На данном этапе полипептидная цепь удлиняется за счет ковалентного присоединения последующих аминокислот, каждая из которых доставляется к рибосоме и встраивается в определенное положение с помощью соответствующей тРНК.
Это самый продолжительный этап белкового синтеза. В начале данного этапа в Р-центре находится инициирующий кодон с присоединенной к нему мет-тРНКi, а в А-центре – триплет, кодирующий включение следующей аминокислоты синтезируемого белка. Включение каждой аминокислоты происходит в 3 стадии.
аа-тРНК следующей входящей в белок аминокислоты связывается с А-центром рибосомы. Включение аа-тРНК в рибосому происходит за счет энергии гидролиза ГТФ при участии белкового фактора элонгации.
Метионин от инициаторной метионил-тРНК, находящейся в Р-центре, присоединяется к α-NH2-группе аминоацильного остатка аа-тРНК А-центра с образованием пептидной связи. Эта реакция называется реакцией транспептидации и катализируется 28S рРНК большой субъединицы. Это один из примеров РНК, обладающих свойствами ферментов (рибозимов).
Удлиненная на один аминокислотный остаток дипептидил-тРНК перемещается из А-центра в Р-центр в результате транслокации рибосомы. Процесс происходит за счет энергии гидролиза ГТФ и с участием ещё одного фактора элонгации. Свободная от метионина тРНКiMet покидает рибосому, а в область А-центра попадает следующий кодон.
По завершении третьей стадии элонгации рибосома в Р-центре имеет дипептидил-тРНК, а в А-центр попадает триплет, кодирующий включение в полипептидную цепь новой аминокислоты. Начинается следующий цикл элонгации, в ходе которого на рибосоме снова проходят описанные выше события. Повторение этих циклов по числу смысловых кодонов мРНК завершает весь этап элонгации.
Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов (УАГ, УАА, УГА). Для этих кодонов нет соответствующих тРНК. Вместо них к рибосоме присоединяются 2 белковых фактора терминации (рилизинг-фактора). Один из них катализирует отщепление синтезированного пептида от тРНК, другой за счет энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы.
Все освободившиеся компоненты белоксинтезирующей системы используются вновь в очередном цикле. Реакции белкового синтеза протекают по конвейерному типу, они синхронизированы, что обеспечивает максимальную скорость и эффективность процесса.
Почти всегда на одной молекуле мРНК трансляцию осуществляют несколько рибосом, образуя полирибосомы или полисомы. Каждая рибосома в полисоме способна синтезировать полную полипептидную цепь. Образование групп рибосом повыщает эффективность использования мРНК, поскольку на ней может одновременно синтезироваться несколько идентичных полипептидных цепей. Полисомы находятся или в свободном состояни, или в тесной связи с мембранами эндоплазматической сети. мРНК, кодирующие внутриклеточные белки, содержатся преимущественно в свободных полисомах, а мРНК, кодирующие секреторные белки, – в мембраносвязанных.Посттрансляционные изменения белков
Многие белки синтезируются в неактивном виде (предшественники) и после схождения с рибосом подвергаются постсинтетическим структурным модификациям. Эти конформационные и структурные изменения полипептидных цепей получили название посттрансляционных изменений. Они включают удаление части полипептидной цепи (частичный протеолиз), ковалентное присоединение одного или нескольких низкомолекулярных лигандов, связывание между собой субъединиц олигомерного белка, приобретение белком нативной конформации (фолдинг).
При частичном протеолизе, например, неактивные предшественники секретируемых ферментов – зимогены – образуют активный фермент после расщепления по определенным участкам молекулы. Наглядным примером последовательного протеолиза служит и образование активных форм инсулина или глюкагона из препрогормонов.
В ходе ковалентных модификаций структурные белки и ферменты могут активироваться или инактивироваться в результате присоединения различных химических групп: фосфатных, ацильных, метильных, олигосахаридных и др. Многочисленным модификациям подвергаются боковые радикалы некоторых аминокислот: в тиреоглобулине йодируются остатки тирозина, в факторах свертывания крови карбоксилируются остатки глутамата, в цепях тропоколлагена гидроксилируются остатки пролина и лизина.
У некоторых белков на N-конце имеются короткие последовательности гидрофобных аминокислотных остатков, которые называют сигнальными последовательностями. Эти участки играют важную роль в транспорте белков через мембраны. В процессе переноса через мембрану сигнальная последовательность отщепляется сигнальной пептидазой. В итоге белок приобретает функциональную активность, оказавшись в соответствующей органелле или вне клетки.
Существование посттрансляционной модификации расширяет возможности клеток в регуляции метаболизма. Изменения количества или активности ферментов, участвующих в модификации белков, приводят к снижению или увеличению концентрации последних, что отражается на скорости соответствующих процессов. Регуляция синтеза белкаСоматические клетки всех тканей и органов многоклеточного организма содержат одинаковую генетическую информацию, но отличаются друг от друга по содержанию тех или иных белков. Для эритроцитов, например, характерно высокое содержание гемоглобина, для клеток соединительной ткани – коллагена, клетки поджелудочной железы вырабатывают много ферментов. В отдельных клетках, тканях и органах содержание разных белков меняется онтогенез. Все это свидетельствует о том, что в живых организмах существуют механизмы, регулирующие белковый синтез. Они функционируют под действием внутренних и внешних факторов на каждой из стадий сложного процесса синтеза белка. Количество протеинов может изменяться в результате увеличения числа некоторых генов, регуляции на стадии транскрипции, процессинга мРНК. Скорость белкового синтеза определяется также и временем жизни мРНК, регуляцией синтеза на уровне трансляции и посттрансляционной модификации белков.
Регуляция на самых ранних этапах (на уровне экспрессии генов) является наиболее выгодной и поэтому широко встречается у эукариотических организмов. На экспрессию генов у эукариот влияет целый ряд факторов.
Организация хроматина и доступность генов: в ядрах дифференцированных клеток хроматин имеет такую укладку, что только небольшое число генов доступно для транскрипции. Различают участки гетерохроматина, в которых ДНК упакована очень компактно и для транскрипции недоступна, и участки эухроматина, имеющие более рыхлую укладку и способные связывать РНК-полимеразу. В разных типах клеток в область эухроматина попадают разные гены. Это ведет к тому, что в разных тканях транскрибируются разные участки хроматина.
Изменение количества генов: амплификация (увеличение числа) генов при необходимости увеличения синтеза определенного генного продукта; утрата генетического материала (процесс, происходящий при созревании некоторых типов клеток, например, эритроцитов).
Перестройка генов или генетичесая рекомбинация: перемещение генов между хромосомами или внутри одной хромосомы, объединение генов с образованием измененной хромосомы, которая после таких изменений способна к репликации и транскрипции.
Существенное значение в обеспечении разнообразия белков играет посттранскрипционный процессинг РНК. Основные способы такой регуляции – альтернативный сплайсинг и изменение стабильности РНК.
Известны и некоторые случаи регуляции количества и разнообразия белков путем изменения скорости процесса их трансляции. Наиболее изученный пример – синтез белков в ретикулоцитах. Известно, что на этом уровне дифференцировки кроветворные клетки лишены ядра, а следовательно и ДНК. Регуляция синтеза белка-глобина осуществляется только на уровне трансляции и зависит от содержания гема в клетке.
Ингибиторы матричных биосинтезов
Существует большая группа веществ, ингибирующих синтез ДНК, РНК или белков. Некоторые из них нашли применение в медицине для лечения инфекционных болезней и опухолевых заболеваний, а другие являются для человека сильнейшими токсинами. К последним можно отнести токсин бледной поганки α-аманитин, который является ингибитором эукариотических РНК-полимераз.
Действие ингибиторов матричных биосинтезов как лекарственных препаратов основано на:
- модификации матриц (ДНК или РНК);
- белоксинтезирующего аппарата (рибосом);
- инактивации ферментов.
Центральное место среди них принадлежит антибиотикам – разнообразным по химическому строению органическим соединениям, синтезируемым микроорганизмами. Краткие сведения об антибиотиках, ингибирующих матричные синтезы, приведены.
Использование ДНК-технологий в медицине
Достижения в области молекулярной биологии существенно повлияли на современную медицину: они не только углубили знания о причинах многих болезней, но и способствовали разработке новых подходов в их диагностике и лечению.
Для выявления дефектов в структуре ДНК она должна быть выделена из биологического материала и “скопирована” (наработана) в количествах, достаточных для исследования. Для генно-терапевтических работ необходимо выделение нормальных генов и введение их в дефектные клетки таким образом, чтобы они экспрессировались, позволяя восстановить здоровье пациента.
Выделение ДНК включает быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран с помощью центрифугирования, разрушение белков протеазами, экстрагирование ДНК с последующим её осаждением. В ходе выделения получают очень большие молекулы, их дополнительно фрагментируют с помощью рестриктаз. Образующиеся фрагменты разделяют методом электрофореза. Количество и длина получающихся фрагментов, и соответственно, расположение полос на электрофореграмме уникально и специфично для каждого человека.
Идентификация характерных последовательностей проводится методом блот-гибридизации по Саузерну. Фрагменты ДНК подвергают денатурации и осуществляют перенос (блоттинг) на плотный носитель (фильтр или мембрану). Фиксированную на фильтре ДНК гибридизуют с небольшими фрагментами ДНК или РНК, содержащими радиоактивную (флюоресцентную или др.) метку. Такие фрагменты называют ДНК- или РНК-зондами. Если в исследуемом образце есть последовательности, комплементарные последовательностям зонда, то гибридизацию можно определить визуально или с помощью специальных приборов. Метод применяется для диагностики инфекционных заболеваний, наследственных дефектов, установления экспрессии тех или иных генов.
Секвенирование (определение первичной структуры) ДНК проводится химическим или энзиматическим методом. Метод Маскама и Гилберта (химический) основан на химической деградации ДНК. Суть метода сводится к следующему: один из концов фрагмента ДНК метят с помощью радиоактивной или флюоресцентной метки. Препарат меченой ДНК делят на четыре порции и каждую из них обрабатывают реагентом, разрушающим одно или два из четырех оснований, причем условия реакции подбирают таким образом, чтобы на каждую молекулу ДНК приходилось лишь несколько повреждений. В результате получается набор меченых фрагментов, длины которых определяются расстоянием от разрушенного основания до конца молекулы. Фрагменты, образовавшиеся во всех четырех реакциях, подвергают электрофорезу в четырех соседних дорожках; затем проводят их идентификацию. По положению отпечатков можно определить, на каком расстоянии от меченого конца находилось разрушенное основание, а зная это основание – его положение. Так набор полос определяет нуклеотидную последовательность ДНК.
Метод Сэнгера (ферментативный) основан на моделировании ДНК-полимеразной реакции, где исследуемая молекула ДНК используется в качестве матрицы. В реакционную смесь добавляют дидезоксинуклеотиды (ОН-группа в 3'-положении пентозы отсутствует). ДНК-полимераза включает эти предшественники в ДНК. Однако, включившись в ДНК, модифицированный нуклеотид не может образовать фосфодиэфирную связь со следующим дезоксирибонуклеотидом. В результате элонгация данной цепи останавливается в том месте, где в ДНК включился дидезоксирибонуклеотид. Реакция проводится одновременно в четырех отдельных пробирках, каждая из которых содержит один из четырех дидезоксинуклеотидов и все 4 дезоксинуклеотидтрифосфата (к ним, как правило присоединяют радиоактивную или флюоресцентную метку). В каждой из пробирок образуется набор меченых фрагментов разной длины. Длина их зависит от того, в каком месте в цепь включен дефектный нуклеотид. Полученные меченые фрагменты ДНК разделяют в полиакриламидном геле с точностью до одного нуклеотида, проводят идентификацию и по картине распределения фрагментов в четырех пробах устанавливают нуклеотидную последовательность ДНК.
Получение рекомбинантных ДНК и их амплификация. При получении рекомбинантных ДНК выделяют эти молекулы из двух разных источников. Каждую из них в отдельности фрагментируют, используя одну и ту же рестриктазу. После процедуры нагревания и медленного охлаждения смеси полученных фрагментов, наряду с исходными молекулами ДНК образуются и рекомбинантные, состоящие из участков ДНК, первоначально принадлежавших разным образцам. Используя технику рекомбинантных ДНК, удаётся исследовать варианты генов, ответственных за развитие многих заболеваний. Этим способом могут быть идентифицированы различные мутации.
Для получения значительных количеств рекомбинантного генетического материала проводят клонирование ДНК, предполагающее встраивание нужного фрагмента ДНК в векторную молекулу, Вектор обеспечивает проникновение этой рекомбинантной ДНК в бактериальные клетки. При размножении трансформированных бактерий происходит увеличение числа копий введенного фрагмента ДНК, а также синтез не свойственных бактериальной клетке, но весьма ценных для человека белковых продуктов. Таким способом получают вакцины, инсулин, гормон роста, факторы свертывания крови и др.
Работа с нуклеотидными последовательностями требует наличия достаточного количества материала для исследования. Поэтому фрагменты ДНК предварительно амплифицируют (увеличивают количество). Метод полимеразной цепной реакции (ПЦР), предложенный в 1983 г. Карри Муллисом, позволяет подвергать специфической амплификации в условиях in vitro любые образцы ДНК.
Процедуру проводят в автоматическом режиме в приборе – термоциклере (циклизаторе, амплификаторе). Это устройство позволяет задавать нужное количество циклов и выбирать оптимальные временные и температурные параметры. С помощью ПЦР можно получить достаточное количество копий участков ДНК, в которых предполагаются присутствие мутаций, полиморфизм сайтов, можно проводить ДНК-диагностику инфицированности пациентов вирусными, бактериальными и грибковыми возбудителями болезней.
Лекция 8
Гормоны (от греческого hormaino – побуждаю) – это биологически активные вещества, которые выделяются эндокринными клетками в кровь или лимфу и регулируют в клетках-мишенях биохимические и физиологические процессы.
В настоящее время предложено расширить определение гормонов: гормоны – это специализированные межклеточные регуляторы рецепторного действия.
В этом определении слова «специализированные регуляторы» подчеркивают, что регуляторная – главная функция гормонов; слово «межклеточные» означает, что гормоны вырабатываются одними клетками и извне действуют на другие клетки; рецепторное действие – первый этап в эффектах любого гормона.
Биороль гормонов. Гормоны регулируют многие жизненные процессы – метаболизма, функции клеток и органов, матричные синтезы (транскрипцию, трансляцию) и другие процессы, определяемые геномом (пролиферацию, рост, дифференцировку, адаптацию, клеточный шок, апоптоз и др.)
Эндокринная система функционирует в тесной взаимосвязи с нервной системой как нейроэндокринная.
Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.
2 – 3. Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (либеринов и статинов), которые стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза.
4 – 5. Гормоны передней доли гипофиза (тропные гормоны) стимулируют образование и секрецию гормонов периферических эндокринных желез, которые поступают в кровь и взаимодействуют с клетками-мишенями. Уровень гормонов в крови поддерживается благодаря механизмам саморегуляции (регуляция по принципу обратной связи). Изменение концентрации метаболитов в клетках-мишенях подавляет синтез гормонов в эндокринной железе или в гипоталамусе (6, 7). Синтез и секреция тропных гормонов подавляется гормонами эндокринных желез (8).
Классификация гормонов
Гормоны классифицируются по химическому строению, биологическим функциям, месту образования и механизму действия.
Классификация по химическому строению. По химическому строению гормоны делят на 3 группы (табл. 12.1):
- пептидные или белковые;
- производные аминокислот;
- стероидные
- производные арахидоновой кислоты – эйкозаноиды (оказывают местное действие)Клетки некоторых органов, не относящихся к железам внутренней секреции (клетки ЖКТ, клетки почек, эндотелия и др.), также выделяют гормоноподобные вещества (эйкозаноиды), которые действуют в местах их образования.
Классификация гормонов по биологическим функциям
Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена липидов и углеводов и, кроме этого, регулирует артериальное давление, частоту сердечных сокращений, сокращение гладких мышц. Эстрогены регулируют не только репродуктивную функцию, но и оказывают влияние на обмен липидов, индуцируют синтез факторов свертывания крови.
Классификация по месту образования
По месту образования гормоны делятся на гормоны гипоталамуса, гипофиза, щитовидной железы, паращитовидных желез, поджелудочной железы, надпочечников, половых желез.
Классификация по механизму действия
По механизму действия гормоны можно разделить на 3 группы:
1.Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект – изменение активности ферментов;
2.гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект – изменение количества белков-ферментов через экспрессию генов;
3.гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.
Основные свойства и особенности действия гормонов
1.Высокая биологическая активность. Гормоны регулируют метаболизм в очень малых концентрациях – 10-8 – 10-11М.
2.Дистантность действия. Гормоны синтезируются в эндокринных железах, а биологические эффекты оказывают в других тканях-мишенях.
Обратимость действия. Обеспечивается адекватным ситуации дозированным освобождением и последующими механизмами инактивации гормонов. Время действия гормонов различно:
- пептидные гормоны: сек – мин;
- белковые гормоны: мин – часы;
- стероидные гормоны: часы;
- йодтиронины: сутки.
3.Специфичность биологического действия.
4.Плейотропность (многообразие) действия. Например, катехоламины рассматривались как краткосрочные гормоны стресса. Затем было выявлено, что они участвуют в регуляции матричных синтезов и процессов, определяемых геномом: памяти, обучения, роста, деления, дифференциации клеток.
5. Дуализм регуляций (двойственность). Так, адреналин как суживает, так и расширяет сосуды. Йодтиронины в больших дозах увеличивают катаболизм белков, в малых – стимулируют анаболизм.
Лекция 9
Витамины – это незаменимые компоненты пищи, которые присутствуя в небольших количествах в пище, обеспечивают нормальное протекание биохимические и физиологических процессов путем участия в регуляции обмена веществ в организме.
Витамины обладают высокой биологической активностью и требуются организму в очень небольших количествах – от нескольких микрограммов до нескольких десятков миллиграммов в день. В отличие от других незаменимых факторов питания (аминокислоты, жирные кислоты и др.), витамины не являются пластическим материалом или источником энергии.
Биологические функции витаминов
Большинство витаминов являются предшественниками коферментов и простетических групп ферментов, катализирующих биохимические реакции в организме. Некоторые витамины выполняют функцию индуктора синтеза белков (витамин А); проявляют гормональную активность (витамин D); оказывают антиоксидантное действие (витамины А, Е, С). Кроме того, каждому витамину присуща специфическая функция в организме.
Классификация витаминов
По физико-химическим свойствам (в частности, растворимости) витамины делятся на две группы: водорастворимые и жирорастворимые. Для обозначения каждого витамина существует буквенный символ, химическое название и название с учетом излечиваемого витамином заболевания с приставкой «анти».
Жирорастворимые витамины:
1.Витамин А; ретинол (антиксерофтальмический).
2.Витамин D; кальциферолы (антирахитический).
3.Витамин Е; токоферолы (антистерильный, витамин размножения).
4.Витамин К; нафтохиноны (антигеморрагический). Водорастворимые витамины:
1.Витамин В1; тиамин (антиневритный).
2.Витамин В2; рибофлавин (витамин роста).
3.Витамин В3; пантотеновая кислота (антидерматитный).
4.Витамин В6; пиридоксин (антидерматитный).
5.Витамин В12; цианокобаламин (антианемический; В9).
6.Витамин РР; никотинамид, никотиновая кислота, ниацин (антипеллагрический).
7.Витамин Вс; фолиевая кислота (антианемический).
8.Витамин Н; биотин (антисеборейный).
9.Витамин С; аскорбиновая кислота (антискорбутный).
10.Витамин Р; рутин (капилляроукрепляющий). Витаминоподобные вещества: группа химических веществ, некоторые из которых частично синтезируются в организме, но обладают витаминными свойствами.
1.В4; холин (липотропный фактор).
2.В8; инозит (липотропный фактор).
3.В13; оротовая кислота (фактор роста).
4.В15; пангамовая кислота (антианоксический).
5.Вт; карнитин.
6.N; липоевая кислота (липотропный фактор).
7.U; (противоязвенный).
8.ПАБК; парааминобензойная кислота (витамин для микроорганизмов).
9.F; линолевая, линоленовая и арахидоновая кислоты.
Раскрытие молекулярных механизмов действия водо- и жирорастворимых витаминов позволило отойти от их разделения по физико-химическому признаку и предложить систему функциональной классификации по характеру их специфических функций в процессах жизнедеятельности. В соответствии с этой системой витамины делятся на три группы:
- витамины коферменты, из которых в организме образуются коферменты различных ферментов (В1, В2, В6, В12, РР, К, С, фолиевая кислота, биотин и др.);
- витамины прогормоны, активные формы которых обладают гормональной активностью (D; А, гормональной формой которого является ретиноевая кислота, играющая важную роль в процессах роста и дифференцировки эпителиальных тканей);
-витамины антиоксиданты (С, Е, -каротин и другие каротиноиды, биофлавоноиды). Некоторая условность этой классификации связана с полифункциональным характером ряда витаминов. Так, витамин С, наряду с антиоксидантным действием, участвует в качестве кофактора в процессах ферментативного гидроксилирования.
|
|
|