Физиология Вегетативная нервная система.. Вегетативная нервная система
Скачать 224.79 Kb.
|
ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА Все функции организма подразделяются на соматические (анимальные) и вегетативные (автономные). К соматическим функциям относятся восприятие внешних раздражений и двигательные реакции скелетной мускулатуры. Эти реакции могут быть произвольно вызваны, усилены или заторможены и находятся под контролем сознания. Вегетативные функции обеспечивают обмен веществ, терморегуляцию, работу сердечно-сосудистой, дыхательной, пищеварительной, выделительной и др. систем, рост и размножение. Вегетативные реакции, как правило, не контролируются сознанием. Вегетативная нервная система (ВНС) - это комплекс центральных и периферических нервных структур, регулирующих деятельность внутренних органов и необходимый функциональный уровень всех систем организма. Более 80 % заболеваний связано с расстройством этой системы. Физиологическое значение: 1. Поддержание гомеостаза - постоянства внутренней среды организма. 2. Участие в вегетативном обеспечении различных форм психической и физической деятельности. Морфологические и функциональные особенности ВНС. Общие свойства соматической и вегетативной нервной системы. 1. Рефлекторные дуги построены по одному плану - имеют афферентные, центральные и эфферентные звенья. 2. Рефлекторная дуга соматического и вегетативного рефлексов может иметь общее афферентное звено. 1 - рецептор 2 - афферентный нерв и афферентный нейрон 3 - интернейрон в спинном мозге 4 - эфферентный нерв, который выходит из эфферентного нейрона 5 - эффекторный орган Строение рефлекторной дуги соматического и вегетативного рефлексов Структура ВНС. ВНС состоит из центрального и периферического отделов. Центральный отдел представлен сегментарными и надсегментарными центрами. Сегментарные центры - спинной, продолговатый и средний мозг. Надсегментарные центры - гипоталамус, мозжечок, базальные ганглии, кора больших полушарий, лимбическая система. Надсегментарные центры оказывают влияние только через нижележащие сегментарные центры. Периферический отдел включает микроганглии метасимпатической нервной системы, пара- и превертебральные ганглии, преганглионарные и постганглионарные волокна ВНС. Центральный нервный контроль вегетативной деятельности Деятельность вегетативной нервной системы варьируется в зависимости от информации, которую она получает от висцеральных и соматических афферентных волокон. Также регуляция зависит от информации, поступающей со стороны высших центров головного мозга, в частности, от гипоталамуса. Внутренние органы иннервируются афферентными волокнами, которые отвечают на механические и химические раздражители. Некоторые висцеральные афферентные волокна достигают спинного мозга через задние корешки вместе с соматическими афферентами. Эти волокна формируют синапсы на сегментарном уровне и передают информацию через восходящие волокна второго порядка в составе спиноталамического тракта спинного мозга. Они проецируются на ядра солитарного тракта, различных двигательных ядрах в стволе головного мозга, в таламус и гипоталамус. Другие висцеральные афференты, например, от артериальных барорецепторов, достигают ствол мозга через афференты блуждающего нерва. Информация от висцеральных афферентов вызывает определенные висцеральные рефлексы, которые, как рефлексы соматической двигательной системы, могут быть либо сегментарными или могут быть связаны с участием нейронов головного мозга. Примеры вегетативных рефлексов - барорецептороный рефлекс, легочные дыхательные рефлексы, рефлекс мочеиспускания. В ответ на предполагаемую опасность и повреждение существует поведенческая предупредительная реакция, которая может привести к агрессивному или оборонительному поведению. Это известно как защитная реакция, которая берет свое начало в гипоталамусе. Во время оборонительной реакции существуют заметные изменения в деятельности вегетативных нервов, при котором нормальное управление рефлексами изменяется. Гипоталамус регулирует гомеостатическую деятельность вегетативной нервной системы и является высшим центральным органом регуляции симпатической и парасимпатической систем. Активность вегетативной нервной системы и функции эндокринной системы находятся под контролем гипоталамуса, который является частью мозга и регулирует, в основном, те функции, которые связанны с поддержанием гомеостаза организма. Если гипоталамус разрушен, гомеостатические механизмы не работают. Гипоталамус получает афференты от сетчатки, органов чувств, соматических органов, и афференты от внутренних органов. Он также получает много информации из других частей мозга, в том числе из лимбической системы и коры головного мозга, которые могут влиять на работу вегетативной нервной системы опосредовано – через изменение работы гипоталамуса. Нейроны гипоталамуса играют важную роль в терморегуляции, в регуляции тканевой осмолярности и водно-солевом балансе, в контроле потребления пищи и питья, в репродуктивной активности. Свойства вегетативных ганглиев. Особенности проведения и возбуждения в них. 1. Явление дивергенции - каждое преганглионарное волокно сильно ветвится и образует синапсы на многих нейронах ганглия. В результате нервные импульсы, поступающие по одному преганглионарному волокну возбуждают большое количество ганглионарных нейронов и еще большее количество мышечных и железистых клеток эффекторного органа. Дивергенции способствует феномен мультипликации - количество преганглионарных волокон меньше, чем постганглионарных - 1 к 190. 2. Широкая конвергенция: на одном ганглионарном нейроне сходится множество преганглионарных волокон. 3. Пространственная и временная суммация нервных импульсов. 4. Низкая лабильность - частота импульсации не более 10 - 15 имп/сек. Например, для поддержания тонуса сосудов в норме необходимо 1-3 имп/сек. Повышение импульсации до 5-6 имп/сек приводит к гипертонической болезни. 5. Большая синаптическая задержка - 1,5 - 30 мсек. В соматической системе и ЦНС - 0,3-0,5 мсек. 6. Большая длительность ВПСП, выраженная следовая гиперполяризация и как следствие - выраженность процессов торможения в вегетативных ганглиях. 7. Трансформация ритма - одиночные импульсы, приходящие по преганглионарным волокнам не передаются через ганглий. Высокая же частота импульсации частично блокируется, и постганглионарные волокна возбуждаются в более редком ритме. Повышение частоты стимуляции преганглионарных волокон до 100 имп/сек вызывает полную блокаду проведения возбуждения через ганглий. ВНС неоднородна в функциональном плане. Состоит из симпатического, парасимпатического и метасимпатического отделов. Для удобства мы рассматриваем в сравнении симпатический и парасимпатический отделы, а метасимпатический - отдельно. Сравнительная характеристика симпатической и парасимпатической систем Медиаторы симпатической и парасимпатической нервной системы В преганглионарных волокнах как симпатической так и парасимпатической нервной системы выделяется ацетилхолин. Он взаимодействует с Н-холинорецепторами (никотин-чувствительные рецепторы) нейронов вегетативных ганглиев. В результате этого происходит передача возбуждения с преганглионарного волокна на ганглионарный нейрон. Н-холинорецепторы ганглиев, как правило, не блокируются курареподобными веществами (в отличие от скелетных мышц, где Н-холинорецепторы обладают высокой чувствительностью к кураре), но блокируются под влиянием ганглиоблокаторов, например, бензогексония. Относительно никотина - в малых концентрациях он возбуждает Н-холинорецепторы, а в больших тормозит, блокирует (в том числе и тот, что содержится в табачном дыме). Кроме того в вегетативном ганглии имеются нейропептиды: метэнкефалин, нейротензин, холецистокинин, вещество Р, но они оказывают модулирующее действие. Постганглионарные волокна симпатической нервной системы, как правило, являются моноаминенергическими (основной медиатор - норадреналин- 90%, адреналин - 7% и дофамин - 3%). Исключение - в постганглионарных симпатических волокнах потовых желез выделяется ацетилхолин, который взаимодействует с М-холинорецепторами (мускаринчувствительными), вызывает возбуждение потовых желез и потоотделение. Для того, чтобы проявился эффект норадреналина, он должен вступить во взаимодействие с адренорецепторами. Выделяют альфа и бета адренорецепторы. При взаимодействия с альфа-адренорецептором меняется проницаемость мембраны для ионов натрия, происходит деполяризация и, как следствие - возбуждение и усиление функции органа. При взаимодействии с бета-адренорецепторами происходит увеличение потока калия, гиперполяризация и соответственно торможение и снижение функции органа. Исключение - взаимодействие норадреналина с бета-АР сердца вызывет усиление деятельности сердца. Помимо этого НА при взаимодействии с адренорецептором может повышать активность аденилатциклазы, что приводит к образованию цАМФ (внутриклеточного месенджера - посредника). Это приводит к активации протеинкиназ, являющимися внутриклеточными регуляторами синтеза различных белков. Механизм саморегуляции выхода медиатора - НА воздействует на пресинаптическую мембрану, которая имеет альфа и бета-АР. Взаимодействие с альфа-АР уменьшает выделение медиатора, а возаимодействие с бета-АР - увеличивает выделение медиатора (положительная обратная связь). Конечный эффект зависит от того, какая популяция адренорецепторов преобладает в органе на пре- и постсинаптической мембране. Блокаторы альфа-Ар - фентоламин, бета-АР - анаприлин (широко применяется для понижения ЧСС и АД). Оба типа рецепторов делятся на два подтипа альфа-1 и альфа-2, бета-1 и бета-2-АР. Антагонисты: альфа-1-АР - празозин, дроперидол альфа-2-АР - раувольсин, йохимбин бета-1-АР - практолол, атенолол бета-2-АР - бутоксамин В целом симпатическая нервная система способствует значительному повышению работоспособности организма - усиливается гликогенолиз, липолиз, деятельность ССС, улучшается вентиляция легких, происходит перераспредение крови из областей, устойчивых к гипоксии к органам, которые нуждаются в кислороде. Вместе с тем имеет место торможение деятельности ЖКТ, расслабление мочевого пузыря, матки, спазм сфинктеров, расширение бронхов. Постганглионарные волокна парасимпатической нервной системы являются холинергическими. Ацетилхолин, выделяясь в нервных окончаниях, взаимодедйствует с М-холинорецпторами (мускаринчувствительными) эффекторного органа. Мускарин - токсин мухомора, активирующий этот вид рецепторов и вызывающий те же эффекты, что и ацетилхолин. Выделяют 5 подтипов М1-М5-холинорецепторов. Блокаторы М-ХР - атропин и скополамин, гемихолин. Эффекты парасимпатической нервной системы: усиление перистальтики ЖКТ, сокращение мышц мочевого пузыря, расслабление сфинктеров, сужение просвета бронхов, сужение зрачка, торможение деятельности сердца, расширение сосудов половых органов, эрекция, увеличение секреции всех желез. Метасимпатическая нервная система Механизм регуляции функций при помощи метасимпатической нервной системы открыл в 1983 г. академик А.Д. Ноздрачев. Метасимпатическая нервная система (МНС) - это комплекс микроганглионарных образований, расположенных в стенках внутренних органов, обладающих двигательной автоматией - сердце, желудке, кишечнике, мочевом пузыре, бронхах и др. Происхождение - миграция нервных клеток по парасимпатическим и симпатическим нервным волокнам во внутренние органы в раннем онтогенезе. Плотность интраорганных нейронов очень высока. Например, в кишечнике находится около 20 тыс. нейронов на 1 кв. см. Структурно состоит из трех типов клеток (классификация по Догелю на примере Ауэрбахова и Мейснервого сплетений ЖКТ): 1-й тип - эфферентные нейроны с многочисленными короткими дендритами, длинные аксоны этих клеток заканчиваются на мышечных клетках этого органа. 2-й тип - крупные, овальные или грушевидной формы афферентные нейроны с 4-5 нервными отростками, выходящими за пределы ганглия. Аксоны заканчиваются на нейронах первого типа или идут к пара- и превертебральным ганглиям или заканчиваются на нейронах спинного мозга. Т.е. афферентная импульсация от внутренних органов может замыкаться на разных уровнях. 3-й тип - редко встречающиеся ассоциативные нейроны, расположены в ганглиях, аксоны заканчиваются на дендритах нейронов 1 и 2 типа. Эти нейроны обеспечивают замыкание рефлекса внутри органа. Свойства и функции метасимпатической нервной системы. 1. Иннервирует только внутренние органы с моторной активностью, содержащие внутреннюю полость (пищевод, желудок, кишечник, сердце, матка, мочевой и желчный пузыри, сосуды). За счет наличия автономной фоновой активности в ганглиях МНС может осуществляться ритмическая спонтанная деятельность, которая возникает благодаря периодическому самовозбуждению нейронов и разрядке в виде потенциалов действия. Это приводит к поддержанию деятельности эффекторных органов на определенном функциональном уровне. Пример – сопряженная ритмическая активность камер сердца, тонус сосудов, кишечника. Если разрушить метасимпатическую нервную систему, органы утрачивают способность к координированной двигательной активности. 2. Получает афферентные входы от симпатической и парасимпатической нервной системы. Осуществляет передачу центральных влияний за счет того, что парасимпатические и симпатические волокна могут контактировать с метасимпачисекой нервной системой и тем самым корригировать ее влияние на объекты управления. 3. Имеет также собственную афферентную часть. Не имеет прямых контактов с эфферентной частью соматической нервной системы. Может выполнять роль самостоятельного интегрирующего образования, так как в ней имеются готовые рефлекторные дуги (афферентные - вставочные - эфферентные нейроны). Например, Г.И. Косицкий показал, что в сердце имеются внутрисердечные рефлексы МНС - растяжение правого предсердия увеличивает работу левого желудочка, а растяжение левого предсердия повышает работу правого желудочка. Этот эффект может тормозиться или блокироваться ганглиоблокаторами. 4. Метасимпатическая нервная система не находится в антагонистических отношениях с симпатической и парасимпатической нервной системой и более независима от ЦНС. 5. Участвует в регуляции локального кровотока и проницаемости сосудистой стенки. 6. Регулирует функции местных эндокринных клеток и секреторной, экскреторной, всасывательной деятельности ЖКТ. 7. Имеет собственные медиаторы. Медиаторы МНС. Согласно последним представлениям - все медиаторы, которые обнаружены в ЦНС, есть и в метасимпатической нервной системе. Основными медиаторами считаются АТФ (в пуринергических синапсах), серотонин, ацетилхолин, норадреналин, дофамин, гистамин, ГАМК и нейропептиды. Поэтому различные фармакологические препараты могут избирательно блокировать проведение возбуждения через соответствующие синапсы и усиливать или ослаблять эффекты, реализуемые МНС. К каждому виду медиатора имеются собственные рецепторы на нейронах МНС. Например, АТФ связывается в синапсах с пуринорецепторами. Пуринорецепторы разделяют на два подтипа - Р-1-пуринорецепторы и Р-2-пуринорецепторы. Р-1-рецепторы чувствительны к аденозину-АМФ-АДФ-АТФ, блокируются метилксантином. Р-2-пуринорецепторы чувствительны к АТФ-АДФ-АМФ-аденозину, блокируются хинидином. Активация пуринорецепторов приводит к расслаблению гладких мышц ЖКТ, ССС, мочеполовой системы. Серотониновые рецепторы расположены в различных органах, но наибольшая часть - 90% в ЖКТ и сердце. Различают много разных видов серотониновых рецепторов . К ним синтезированы селективные блокаторы, которые используются для лечения заболеваний ЖКТ, аритмий сердца, мигрени, депрессии, шизофрении. Гистаминовые рецепторы бывают двух типов - Н-1 и Н-2. Блокируются димедролом, диазолином, пипольфеном. Применяются для лечения аллергических реакций, заболеваний ЦНС, обладают снотворным и успокаивающим эффектом, усиливают действие наркотиков и анальгетиков. В рефлекторных дугах МНС медиаторами могут выступать около 20 видов нейропептидов. Основные из них - соматостатин, вазоактивный интестинальный пептид, вещество Р, нейротензин и др. Модуляторами выступают кинины, опиоидные пептиды, простагаландины, ренин, ангиотензин и ряд других БАВ. Вегетативные рефлексы Подразделяются на центральные и периферические. Центральные рефлексы осуществляются при участии нейронов ЦНС - сегментарных и надсегментарных нервных центров. Периферические вегетативные рефлексы - при участии ганглионарных нейронов, расположенных вне ЦНС - в вегетативных ганглиях. 1. Внутриорганные рефлексы, например, внутрисердечные. Осуществляются в пределах метасимпатической нервной системы органа. Обеспечивают автономную работу органа после перерезки симпатических и парасимпатических нервов. 2. Межорганные рефлексы - осуществляются за счет рефлекторных дуг, которые замыкаются на уровне вегетативного ганглия без подключения сегментарных и надсегментарных центров. Это 1) освобождает ЦНС от переработки избыточной информации и 2) после выключения связи органа с ЦНС (например, травма спинного мозга) обеспечивают автономное функционирование и относительную надежность регуляции физиологических функций органа. 3. Аксон-рефлекс - рефлекторная реакция в пределах разветвления одного аксона без участия тела нейрона за счет ретроградного распространения возбуждения с одной ветви аксона на другую. Например, при механическом или болевом раздражении участка кожи может возникать покраснение этого участка. Ограничивает действие сигналов с периферии в центр. В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-висцеральные, висцеро-соматические, сомато-висцеральные, висцеро-дермальные, дермо-висцеральные и висцеро-сенсорные. 1. Висцеро-висцеральные рефлексы возникают при возбуждении рецепторов, которые расположены во внутренних органах. Информация от них идет в ганглий, обрабатывается и по эфферентным путям возвращается в тот же орган, где возбудились рецепторы или в другой орган. Например, рефлекс Гольца возникает при механическом раздражении брюшины и сопровождается уменьшением ЧСС. Рефлекс Бейнбриджа - растяжение правого предсердия приводит к усилению выделения вазопрессина в супраоптическом ядре гипоталамуса и повышению диуреза почками. 2. Висцеро-соматические рефлексы сопровождаются интегрированной реакцией висцеральных и соматических органов вследствие сегментарной иннервации некоторых органов - сердца, кишечника и др. Например, раздражение передней брюшной стенки может приводить к сокращению мышц живота или сокращению мышц-сгибателей конечностей. При холецистите, аппендиците возникает напряжение мышц соответствующих областей и изменяется поза пациента. 3. Сомато-висцеральные - раздражение соматических рецепторов изменяет деятельность внутренних органов. Например, рефлекс Данини-Ашнера - надавливание на глазные яблоки вызывает понижение ЧСС, что используют врачи скорой помощи для снижения тахикардии. Раздражение проприорецепторов мышц и сухожилий при переходе из положения лежа в положение стоя вызывает увеличение ЧСС, АД и ЧД (ортостатический рефлекс). 4. Висцеро-дермальные - возникают при раздражении внутренних органов и проявляются в изменении потоотделения, электрического спротивления кожи, покраснения или бледности в соответствующих областях. 5. Дермо-висцеральные - при раздражении участков кожи возникают сосудистые реакции и изменения в деятельности внутренних органов. Например, поглаживание кожи живота по часовой стрелке усиливает перистальтику кишечника. На основе этих рефлексов разработаны принципы иглоукалывания и мануальной терапии. 6. Висцеро-сенсорные рефлексы возникают при изменении работы внутренних органов и выражаются в изменении чувствительности - тактильной - (гиперстезия) или болевой (гипералгезия). В основе этих рефлексов лежит наличие проекционных зон внутренних органов на поверхность тела - зоны Геда. Например, нарушения в деятельности сердца могут приводить к боли в области левой руки, мизинца. Холецистит может сопровождаться болями в области сердца, грудины. |