Главная страница
Навигация по странице:

  • 1.Системы пакетной обработки

  • В системах разделения времени


  • Воронов Михаил Петрович mstrk@yandex.ru

  • прога вога бога. Лекция+4+-+ВССТ. Вычислительные системы, сети и телекоммуникации


    Скачать 0.81 Mb.
    НазваниеВычислительные системы, сети и телекоммуникации
    Анкорпрога вога бога
    Дата14.03.2022
    Размер0.81 Mb.
    Формат файлаpptx
    Имя файлаЛекция+4+-+ВССТ.pptx
    ТипЛекция
    #396415

    Вычислительные системы, сети и телекоммуникации

    Лекция 4 – Локальные и глобальные сети. Топология компьютерных сетей. Типы каналов передачи данных.

    Локальные и глобальные сети

    Благодаря появлению мэйнфреймов были реализованы основные механизмы современных операционных систем:

    - мультипрограммирование;

    • поддержка многотерминального и многопользовательского режима.
    • Мультипрограммирование - способ организации вычислительного процесса, при котором в памяти компьютера находятся одновременно несколько программ, которые попеременно выполняются.

    Локальные и глобальные сети

    Мультипрограммирование реализовано в двух вариантах:

    1.Системы пакетной обработки - строились на базе мэйнфрейма. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день. Таким образом, одна неверно набитая карта означала как минимум суточную задержку. 2.В системах разделения времени пользователям представляется возможность интерактивной работы сразу с несколькими приложениями. Для этого каждое приложение должно регулярно взаимодействовать с пользователем. Многотерминальные системы, работающие в режиме разделения времени, стали первым шагом на пути создания локальных вычислительных сетей. Многотерминальный режим используется в системах разделения времени и в системах пакетной обработки.

    Локальные и глобальные сети

    Наибольшее развитие получили интерактивные многотерминальные системы разделения времени.

    В таких системах компьютер отдавался в распоряжение сразу нескольким пользователям. Каждый пользователь получал в свое распоряжение терминал, с помощью которого он мог вести диалог с компьютером. Причем время реакции вычислительной системы было достаточно мало для того, чтобы пользователю была не слишком заметна параллельная работа с компьютером и других пользователей. Разделяя таким образом компьютер, пользователи получили возможность пользоваться преимуществами компьютеризации. Терминалы, постепенно выходя за пределы вычислительного центра, рассредоточились по всему предприятию. И хотя вычислительная мощность оставалась полностью централизованной, некоторые функции - такие как ввод и вывод данных - стали распределенными.

    Локальные и глобальные сети

    Такие многотерминальные централизованные системы внешне уже были очень похожи на локальные вычислительные сети. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него поддерживалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент и почти сразу же получить результат.

    Таким образом, многотерминальные системы, работающие в режиме разделения времени, стали первым шагом на пути создания локальных вычислительных сетей (рис. 1).

    Рис. 1. Многотерминальная система

    Локальные и глобальные сети

    Со временем появилась необходимость доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров.

    Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер. Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым механизмом любой вычислительной сети. Используя этот механизм, в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными сетевые службы.

    Локальные и глобальные сети

    Таким образом появились глобальные вычислительные сети. Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи и концепции современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов, маршрутизация пакетов в составных сетях.

    Появление интегральных схем, со сравнительно невысокой стоимостью и высокими функциональными возможностями привело к созданию мини-компьютеров, которые стали реальными конкурентами мэйнфреймов.

    Даже небольшие подразделения предприятий получили возможность покупать для себя компьютеры. Мини-компьютеры выполняли задачи управления технологическим оборудованием, складом и другие задачи уровня подразделения предприятия. Таким образом, появилась концепция распределения компьютерных ресурсов по всему предприятию. Однако при этом все компьютеры одной организации по-прежнему продолжали работать автономно (рис. 2).

    Рис. 2. Автономное использование мини-компьютеров

    Локальные и глобальные сети

    С течением времени, потребности пользователей вычислительной техники росли, им стало недостаточно собственных компьютеров, им уже хотелось получить возможность обмена данными с другими близко расположенными компьютерами. В ответ на эту потребность предприятия и организации стали соединять свои мини-компьютеры вместе и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые локальные вычислительные сети (рис. 3).

    Рис. 3. Типы связей в первых локальных сетях

    Локальные и глобальные сети

    На первых порах для соединения компьютеров друг с другом использовались самые разнообразные нестандартные устройства со своим способом представления данных на линиях связи, своими типами кабелей и т. п. В середине 80-х годов утвердились стандартные технологии объединения компьютеров в сеть - Ethernet, Arcnet, Token Ring. Мощным стимулом для их развития послужили персональные компьютеры. Эти массовые продукты явились идеальными элементами для построения сетей - с одной стороны, они были достаточно мощными для работы сетевого программного обеспечения, а с другой - явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы.

    Локальные и глобальные сети

    Стандартные сетевые технологии превратили процесс построения локальной сети из искусства в рутинную работу. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, например, NetWare. После этого сеть начинала работать и присоединение каждого нового компьютера не вызывало никаких проблем - естественно, если на нем был установлен сетевой адаптер той же технологии.

    Топология компьютерных сетей

    Постепенно формируются стандартные способы организации компьютерных локальных сетей, формируется понятие топологии компьютерных сетей.

    Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети один относительно одного и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, в первую очередь, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей не слишком важна, потому что каждый сеанс связи может выполняться по своему собственному пути.  Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.

    Топология компьютерных сетей

    Существует три основные топологии сети:

    Топология типа шина

    Топология типа звезда

    Топология типа кольцо

    Полносвязная топология

    Топология компьютерных сетей

    Топология типа шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала (рис. 4).

    Рис. 4.  Сетевая топология «шина»

    Топология компьютерных сетей

    Топология типа шина

    Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет — кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным станциям. Шина самой своей структурой допускает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать только по очереди, потому что линия связи единственная. В противном случае переданная информация будет искажаться в результате наложения (конфликту, коллизии). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

    Топология компьютерных сетей

    Топология типа шина

    В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, которая увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно. Шине не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети могут нормально продолжать обмен. Может показаться, что шине не страшен и обрыв кабеля, поскольку в этом случае остаются две полностью работоспособных шины. Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств – терминаторов.

    Топология компьютерных сетей

    Топология типа шина

    Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Так что при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Любой отказ сетевого оборудования в шине очень трудно локализовать, потому что все адаптеры включены параллельно, и понять, который из них вышел из строя, не так-то просто.

    Топология компьютерных сетей

    Топология типа шина

    Достоинства:

    • Небольшое время установки сети;
    • Дешевизна (требуется меньше кабеля и сетевых устройств);
    • Простота настройки;
    • Выход из строя рабочей станции не отражается на работе сети.
    • Недостатки:

    • Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;
    • Сложная локализация неисправностей;
    • С добавлением новых рабочих станций падает производительность сети.
    • В основном использовалась в сетях коаксиального кабеля, к которому подключены компьютеры. Пример сеть Ethernet.

    Топология компьютерных сетей

    Топология типа звезда

    Звезда — базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии(как правило "дерево"). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом ложится очень большая нагрузка, потому ничем другим, кроме сети, оно заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможные, потому что управление полностью централизовано (рис. 5).

    Рис. 5.  Сетевая топология «звезда»

    Топология компьютерных сетей

    Топология типа звезда

    Различают:

    Активная звезда - в центре сети содержится компьютер, который выступает в роли сервера (рис. 5).

    Пассивная звезда - в центре сети с данной топологией содержится не компьютер, а концентратор, или хаб(hub), что выполняет ту же функцию, что и репитер. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи (рис. 6).

    Рис. 6.  Сетевая топология «звезда»

    Топология компьютерных сетей

    Топология типа звезда

    Достоинства:

    • выход из строя одной рабочей станции не отражается на работе всей сети в целом;
    • хорошая масштабируемость сети;
    • лёгкий поиск неисправностей и обрывов в сети;
    • высокая производительность сети (при условии правильного проектирования);
    • гибкие возможности администрирования.
    • Недостатки:

    • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
    • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
    • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.
    • В основном используется в сетях, где носителем выступает кабель витая пара. UTP категория 3 или 5. Пример сеть Fast Ethernet.

    Топология компьютерных сетей

    Топология типа кольцо

    Кольцо — это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов (рис. 7).

    Рис. 7.  Сетевая топология «кольцо»

    Топология компьютерных сетей

    Топология типа кольцо

    Важна особенность кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли репитера, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

    Топология компьютерных сетей

    Топология типа кольцо

    Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие – позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захвата сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кильке может быть достаточно большая (до тысячи и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самими большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

    Топология компьютерных сетей

    Топология типа кольцо

    В кольце, в отличие от других топологий (звезда,шина), не используется конкурентный метод посылки данных,компьютерв сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

    Топология компьютерных сетей

    Топология типа кольцо

    Для устранения недостатков используется топология двойное кольцо. 

    Двойное кольцо – это сеть, построенная на двух оптоволоконных кольцах, соединяющих компьютеры с двумя сетевыми картами кольцевой топологией. Для повышения отказоустойчивости, сеть строится на оптоволоконных кольцах образующих основной и резервный путь для передачи данных. Первое кольцо используется для передачи данных, а второе не используется. При выходе из строя 1-го кольца оно объединяется со 2-м и сеть продолжает функционировать. Данные при этом по первому кольцу передаются в одном направлении, а по второму в обратном.

    Топология компьютерных сетей

    Топология типа кольцо

    Достоинства:

    • Простота установки;
    • Практически полное отсутствие дополнительного оборудования;
    • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.
    • Недостатки:

    • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
    • Сложность конфигурирования и настройки;
    • Сложность поиска неисправностей.
    • Наиболее широкое применение получила в оптиковолоконных сетях. Используется в стандартах FDDI, Token ring.

    Топология компьютерных сетей

    Полносвязанная топология

    Полносвязная топология соответствует сети, в которой каждый компьютер сети связан со всеми остальными. Несмотря на логическую простоту, этот вариант оказывается громоздким и неэффективным. Действительно, каждый компьютер в сети должен иметь большое количество коммуникационных портов, достаточное для связи с каждым из остальных компьютеров сети. Для каждой пары компьютеров должна быть выделена отдельная электрическая линия связи. Полносвязные топологии применяются редко. Чаще этот вид топологии используется в многомашинных комплексах или глобальных сетях при небольшом количестве компьютеров или маршрутизаторов (рис. 8).

    На практике нередко используют и комбинации базовой топологии, но большинство сетей ориентированные на три базовых топологии.

    Рис. 8.  Полносвязанная топология

    Постепенно формируется понятие локальной вычислительной сети.

    Локальная вычислительная сеть – это система распределенной обработки данных, охватывающую небольшую территорию (диаметром до 10 км) внутри учреждений, НИИ, вузов, банков, офисов и т.п., это система взаимосвязанных и распределенных на фиксированной территории средств передачи и обработки информации, ориентированных на коллективное использование общесетевых ресурсов — аппаратных, информационных, программных. ЛВС можно рассматривать как коммуникационную систему, которая поддерживает в пределах одного здания или некоторой ограниченной территории один или несколько высокоскоростных каналов передачи информации, предоставляемых подключенным абонентским системам (АС) для кратковременного использования.

    В обобщенной структуре ЛВС выделяются совокупность абонентских узлов, или систем (их число может быть от десятков до сотен), серверов и коммуникационная подсеть (КП).

    Основными компонентами сети являются:

    • передающие среды (каналы передачи, кабели);
    • рабочие станции (АРМ пользователей сети);
    • платы интерфейса сети (сетевые адаптеры);
    • серверы сети.

    Типы каналов передачи данных

    Применяемые в вычислительных сетях каналы передачи данных классифицируются по ряду признаков:

    • По форме представления информации в виде электрических сигналов каналы подразделяют на:
      • цифровые;
      • аналоговые.
      • 2. По физической природе среды передачи данных различают:

      • проводные (обычно медные);
      • оптические (как правило, волоконно-оптические);
      • беспроводные (инфракрасные и радиоканалы).
      • 3. По способу разделения среды между сообщениями выделяют:

      • каналы с временным (TDM) разделением;
      • каналы с частотным (FDM) разделением.

    Типы каналов передачи данных

    Аналоговые каналы

    Аналоговый канал на входе (и, соответственно, на выходе) имеет непрерывный сигнал, те или иные характеристики которого (например, амплитуда или частота) несут передаваемую информацию.

    Для передачи дискретной информации по каналам тональной частоты (аналоговым каналам) необходимы устройства преобразования сигналов, согласующие характеристики дискретных сигналов и аналоговых линий. Такое преобразование называют аналоговой модуляцией при передаче и демодуляцией при приеме, и оно осуществляется с помощью специальных устройств — модемов.

    Типы каналов передачи данных

    Аналоговые каналы

    Основные способы аналоговой модуляции: амплитудная, частотная и фазовая. Возможно также использование комбинированных методов, например, сочетания амплитудной и фазовой модуляций.

    При амплитудной модуляции изменяется только амплитуда синусоиды несущей частоты, при передаче логической единицы выдается синусоида одной амплитуды, а при передаче логического нуля – другой амплитуды. Этот способ в чистом виде обладает низкой помехоустойчивостью и применяется редко. При частотной модуляции изменяется только частота несущей – для логической единицы и логического нуля выбираются синусоиды двух различных частот. Этот способ достаточно просто реализуем, и часто применяется при низкоскоростной передаче данных.

    При фазовой модуляции логической единице и логическому нулю соответствуют сигналы одинаковой амплитуды и частоты, но отличающиеся по фазе (например, 0 и 180 градусов).

    Типы каналов передачи данных

    Аналоговые каналы

    Из комбинированных методов широко используются методы квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM), сочетающие амплитудную модуляцию с 4 уровнями амплитуды и фазовую модуляцию с 8 значениями сдвига фазы. Из 32 возможных комбинаций амплитуды и сдвига фазы для передачи данных в разных модификациях метода используются всего несколько, в то время, как все остальные комбинации являются запрещенными, что позволяет улучшить распознавание ошибочных сигналов.

    Типы каналов передачи данных

    Аналоговые каналы

    Устройства, выполняющие модуляцию и демодуляцию (восстановление из модулированного сигнала исходных данных), называются модемами (МОДулятор-ДЕМодулятор). Модемы классифицируют по области применения, функциональному назначению, типу используемого канала, поддержке протоколов модуляции, исправления ошибок и сжатия данных, конструктивному исполнению.

    Типы каналов передачи данных

    Аналоговые каналы

    По области применения модемы можно разделить на следующие группы:

    -для коммутируемых телефонных каналов,

    -для выделенных каналов,

    -для физических линий:

    -узкополосные (baseband),

    -короткого радиуса действия (short range или line driver),

    -для цифровых систем передачи (CSU/DSU),

    -для сотовых систем связи,

    -для радиоканалов с пакетной передачей,

    -для локальных радиосетей.

    Типы каналов передачи данных

    Аналоговые каналы

    Модемы для выделенных арендованных каналов отличаются от модемов для коммутируемых линий только в том, что им не требуется взаимодействовать с аппаратурой АТС для установления соединения. Они тоже должны работать в узкой полосе пропускания. Узкополосные модемы для физических линий используют методы модуляции, аналогичные применяемым в модемах для коммутируемых линий, но за счет более широкой полосы пропускания, могут достигать более высоких скоростей передачи – 128 Кбит/с и выше.

    Типы каналов передачи данных

    Аналоговые каналы

    Модемы короткого радиуса действия используют уже не аналоговую модуляцию, а цифровые сигналы. Часто используются разнообразные методы цифрового кодирования, исключающие постоянную составляющую из сигнала.

    Модемы для цифровых систем передачи обеспечивают подключение к стандартным цифровым каналам (T1/E1, ISDN) и поддерживают функции канальных интерфейсов.

    Модемы для сотовых систем связи обычно поддерживают специальные протоколы модуляции и коррекции ошибок, позволяющие работать при часто изменяющихся параметрах среды передачи и высоком уровне помех.

    Типы каналов передачи данных

    Аналоговые каналы

    Модемы для радиоканалов с пакетной передачей используют одну и ту же полосу частот, в которой организуется множественный доступ, например, с контролем несущей. Достигаемая при этом скорость передачи обычно невысока – до 64 Кбит/с, но расстояние между станциями может составлять несколько километров. Модемы для локальных радиосетей обеспечивают передачу данных с высокой скоростью (до 16 Мбит/с) на небольшие расстояния (до 300 м). Для предотвращения взаимного влияния нескольких одновременно передающих модемов используются различные способы, например, псевдослучайной перестройки рабочей частоты или широкополосной передачи.

    Типы каналов передачи данных

    Аналоговые каналы

    Модемные протоколы можно разбить на несколько групп:

    -протоколы, определяющие соединение модема и канала связи: V.2, V.25 и др.

    -протоколы, определяющие соединение модема с ООД (компьютером): V.10, V.11, V.14, V.25, V.25bis, V.28 и др.

    -протоколы модуляции: V.17, V.22, V.32, V.32bis, V.32ter, V.34, V.90, HST, PEP, ZyX и др.

    -протоколы коррекции ошибок: MNP1-MNP4, MNP6, MNP10, V.41, V.42;

    -протоколы сжатия данных: V.42bis, MNP5, MNP7;

    -протоколы согласования параметров связи: V.8;

    -протоколы диагностики модемов: V.51-V.54, V.56.

    Типы каналов передачи данных

    Цифровые каналы

    Цифровой канал принимает и выдает данные в цифровой (дискретной, импульсной) форме.

    На этом уровне вместо битовой скорости (бит/с) используют понятие скорости изменения сигнала в линии или бодовой скорости (бод, baud). Эта скорость представляет собой число изменений различаемых состояний линии за единицу времени. В случае двухуровневого кодирования битовая и бодовая скорости совпадают, но с увеличением количества различимых уровней, битовая скорость растет, а бодовая остается постоянной. Передача данных может происходить по кабелю (в этом случае говорят об ограниченной среде передачи и проводных линиях связи) и с помощью электромагнитных волн той или иной природы – инфракрасных, микроволн, радиоволн, – распространяющихся в пространстве (неограниченная среда передачи, беспроводные линии связи).

    Типы каналов передачи данных

    Цифровые каналы

    Коммутаторы должны обеспечивать использование соединяющих их каналов для одновременной передачи нескольких абонентских составных каналов. Для этого применяются разнообразные техники мультиплексирования абонентских каналов, среди которых частотное мультиплексирование (FDM, Frequency Division Multiplexing) и мультиплексирование с разделением времени (TDM, Time Division Multiplexing, или синхронный режим передачи – STM, Synchronous Transfer Mode). Частотное мультиплексирование сводится к разделению диапазона частот на полосы, каждая из которых отведена для передачи данных одного абонентского канала. Коммутатор выполняет перенос частоты каждого канала в выделенную для него полосу (обычно путем модуляции высокочастотной несущей низкочастотным сигналом данных). При мультиплексировании с разделением времени мультиплексор в каждый момент времени выдает в общий канал данные единственного абонентского канала, отдавая ему всю полосу пропускания, но чередуя абонентские каналы через равные промежутки времени. Мультиплексирование с разделением времени ориентировано на дискретный характер передаваемых данных и цифровые каналы.

    Типы каналов передачи данных

    Проводные каналы

    Для соединения компьютеров в локальную сеть обычно используют металлические (преимущественно медные):

    - витые пары

    - коаксиальные кабели

    - волоконно-оптические кабели

    Типы каналов передачи данных

    Проводные каналы

    Витая пара, представлет собой пару переплетенных проводов. При этом вряд ли вы получите работающую витую пару, взяв два любых провода и несколько раз перекрутив их между собой. Для обеспечения требуемой скорости передачи данных по витой паре, она должна удовлетворять стандартам на площадь поперечного сечения провода, на количество витков на единицу длины и на расстояние от последнего витка до разъема. Существует две разновидности витой пары: экранированная (STP, Shielded Twisted Pair) и неэкранированная (UTP, Unshielded Twisted Pair). В основном используется более удобная при монтаже и дешевая неэкранированная витая пара.

    Типы каналов передачи данных

    Проводные каналы

    Кабели витой пары (UTP) выпускаются преимущественно в 4-х парном исполнении (рис. 9), иногда встречаются 2-х парные кабели, и многопарные кабели – 25 пар и более. Основные сетевые технологии – Ethernet и Token Ring – используют только две пары, но существуют и технологии (100VG-AnyLAN), передающие данные по всем все четырем парам. Пары помечены цветом изоляции: синий и бело-синий, оранжевый и белооранжевый, зеленый и бело-зеленый, коричневый и бело-коричневый.

    Рис. 9.  4-парный кабель UTP

    Типы каналов передачи данных

    Проводные каналы

    Для соединения кабелей и оборудования используются 8-контактные разъемы RJ-45 (рис. 10). Стандарт EIA/TIA-568A определяет два варианта раскладки проводников по контактам: T568A и T568B. В каждой локальной сети может использоваться любой вариант разводки, но не оба сразу.

    Рис. 10.  Разъем RJ-45

    Типы каналов передачи данных

    Проводные каналы

    Витая пара используется для передачи данных на расстояния до нескольких сотен метров. Стандарт Ethernet ограничивает длину сегмента на неэкранированной витой паре до 100 м. (Некоторые фирмы, например 3COM, выпускают сетевое оборудование в этом стандарте, позволяющее увеличить длину сегмента почти до 200 м.)

    Основной недостаток неэкранированной витой пары – сильная подверженность влиянию электромагнитных помех.

    Типы каналов передачи данных

    Проводные каналы

    Экранированная витая пара (STP) хорошо защищает передаваемые сигналы от влияния внешних электромагнитных полей, но требует заземления экрана при проводке, что усложняет и удорожает кабельную систему. Кабель STP в основном используется фирмой IBM, которая фирменным стандартом определила девять его категорий – от Type 1 до Type 9. Кабель Type 1 состоит из двух пар и по параметрам близок к UTP CAT 5, за исключением волнового сопротивления – 150 Ом. Кабели STP преимущественно используются в сетях Token Ring, но могут применяться и в сетях Fast Ethernet и 100VG-AnyLAN.

    Типы каналов передачи данных

    Проводные каналы

    Коаксиальный кабель состоит из двух концентрических проводников, разделенных слоем диэлектрика. Внешний проводник при этом экранирует внутренний. Такой кабель меньше, чем витая пара, подвержен влиянию внешних электромагнитных помех. Коаксиальный кабель выпускается в нескольких вариантах, различающихся диаметром проводников. Наибольшее применение получил кабель с маркировкой RG-58 (толщина 4,95 мм, диаметр центрального проводника 0,81 мм, волновое сопротивление 50 Ом), так называемый "тонкий" коаксиальный кабель (рис. 11).

    Рис. 11.  Коаксиальный кабель

    Типы каналов передачи данных

    Проводные каналы

    Для соединения коаксиальных кабелей используются N-разъемы (“толстый” коаксиал) и BNC-разъемы (“тонкий” коаксиал, рис. 12).

    Рис. 12.  BNC-разъем, T-коннектор 

    Типы каналов передачи данных

    Проводные каналы

    В настоящее время коаксиальный кабель считается устаревшим. Коаксиальный кабель, как и витая пара, используется для передачи данных на расстояния до нескольких сотен метров. Стандарт Ethernet ограничивает длину сегмента на "тонком" коаксиальном кабеле до 185м, а на "толстом" – до 500м. Основное применение коаксиальный кабель нашел в сетях Ethernet. В настоящее время все высокопроизводительные сетевые технологии используют либо витую пару, либо волоконно-оптический кабель и полностью игнорируют коаксиальный кабель.

    Типы каналов передачи данных

    Проводные каналы

    Помимо металлических проводников, при построении сетей используются также и стеклянные (точнее, кварцевые) – волоконно-оптические кабели, передающие данные посредством световых волн.

    Сердечник такого кабеля представляет собой тонкое кварцевое волокно, заключенное в пластиковую отражающую оболочку. В достаточно тонком волокне (диаметр жилы порядка 5-15 мкм, что сравнимо с длиной световой волны) может распространяться только один световой луч (одна мода). Такой кабель называется одномодовым (Single Mode Fiber, SMF). Скорость передачи данных по одномодовому кабелю может достигать десятков гигабит в секунду. При этом, за счет использования световых волн разной длины, возможна одновременная организация в одном волокне нескольких высокоскоростных каналов. Типичная полоса пропускания одномодового кабеля достигает 900 ГГц.

    Типы каналов передачи данных

    Проводные каналы

    Однако производство одномодового кабеля довольно сложно, кроме того, для монтажа такого кабеля требуется использование прецизионного оборудования. Поэтому более распространен так называемый многомодовый (Multi Mode Fiber, MMF) волоконно-оптический кабель, которому свойственна относительно большая толщина волокна (40-110 мкм). При этом световые лучи, входя в кабель под разными углами, отражаются от стенок волокна, проходят разные расстояния и попадают к приемнику в разное время, искажая друг друга. Существуют способы уменьшения искажений, однако, в основном, за счет уменьшения полосы пропускания. В результате многомодовый волоконнооптический кабель длиной 100 м может предоставить полосу пропускания в 1600 МГц при длине волны 0.85 мкм.

    Типы каналов передачи данных

    Проводные каналы

    Первое поколение передатчиков (середина 1970-х годов) строилось на основе светодиодов, работающих на длине волны 0.85 мкм в многомодовом режиме.

    Второе поколение (конец 1970-х) составили одномодовые передатчики, работающие на длине волны 1.3 мкм.

    В начале 1980-х появились передатчики третьего поколения – лазерные диоды, работающие на длине волны 1.55 мкм.

    Четвертое поколение оптических передатчиков (начало 1990-х) базируется целиком на лазерных диодах и реализует когерентные системы связи с частотной или фазовой модуляцией сигнала.

    Пятое поколение базируется на использовании новой технологии легирования световодов, позволяющей значительно усиливать проходящие по световоду сигналы.

    Типы каналов передачи данных

    Проводные каналы

    Скорость передачи с использованием светодиодов при длине кабеля до 1 км лежит в пределах 10-25 Мбит/с, а с использованием лазерных диодов – в пределах 25-100Мбит/с. В начале 1990-х годов была создана система связи со скоростью передачи данных в 2.5 Гбит/с на расстояние свыше 2200 км.

    Стандарт EIA/TIA-568A определяет два типоразмера многомодового кабеля: 62,5/125 мкм и 50/125 мкм (первое число – диаметр внутреннего проводника, второе – диаметр оболочки).

    Волоконно-оптические кабели обладают наилучшими электромагнитными и механическими характеристиками, не подвержены влиянию электромагнитных помех, затрудняют перехват данных, но их монтаж наиболее сложен и трудоемок, требует применения специализированного дорогостоящего оборудования и квалифицированного персонала.

    Типы каналов передачи данных

    Беспроводные каналы

    Инфракрасные каналы работают в диапазоне высоких частот вплоть до 1000 ГГц, где сигналы мало подвержены влиянию электромагнитных помех, следовательно, передача данных может осуществляться на высокой скорости.

    Существует три основных типа инфракрасных каналов:

    - прямой видимости (приемопередатчики направлены друг на друга),

    • рассеянного излучения (волны отражаются от пол, стен, потолка помещения)
    • отраженного излучения (приемопередатчики направлены на общий отражатель).
    • Основная проблема таких каналов – поглощение и рассеивание инфракрасных волн в атмосфере, сильная зависимость от погодных условий. Даже лист бумаги, случайно оказавшийся между передатчиком и приемником, может полностью блокировать передачу данных.

    Типы каналов передачи данных

    Беспроводные каналы

    Использование ненаправленной антенны и маломощного передатчика (100 мВт) ограничивает дальность связи до 30-50 м. Направленная антенна и более мощный передатчик (250 мВт) увеличивают возможную дальность связи до 10 км.

    Выпускается оборудование для организации высокоскоростных инфракрасных каналов (до 155 Мбит/c) при дальности связи до 150 м.

    Типы каналов передачи данных

    Беспроводные каналы

    Радиоволны, широкополосные сигналы занимают значительно более широкий частотный диапазон, чем тот, что потребовался бы при обычной передаче.

    Для расширения спектра используются две основные технологии, основанные на использовании псевдослучайного (шумоподобного) кодирования сигнала. Обе технологии лежат в основе стандарта IEEE 802.11.

    Типы каналов передачи данных

    Беспроводные каналы

    Первый способ формирования широкополосного сигнала – метод частотных скачков (Frequency Hopping Spread Spectrum, FHSS). Весь выделенный диапазон частот разбивается на несколько поддиапазонов (IEEE 802.11 определяет для FHSS разбиение на 79 поддиапазонов). Передатчик постоянно переходит с одного поддиапазона на другой: например, первый бит передается в первом поддиапазоне, второй – в 12, третий – в 7, четвертый – в 53 и т.д. Ясно, что, не зная последовательности и частоты переключения диапазонов, сигнал принять невозможно. 

    Типы каналов передачи данных

    Беспроводные каналы

    Второй способ называется методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS). При передаче в каждый блок данных встраиваются пустые биты (с псевдослучайными – шумоподобными – значениями). После каждого информационного бита добавляется свое количество пустых битов. Получаемые последовательности битов в DSSS называются чипами. Каждый чип затем передается на своей частоте (IEEE 802.11 определяет для DSSS 11 несущих частот). Восстановление сигнала осуществляется с помощью специального процессора, выделяющего данные из шума с помощью коррелятора.

    Типы каналов передачи данных

    Беспроводные каналы

    При использовании миниатюрных ненаправленных антенн возможна передача данных на расстояние до нескольких десятков метров (30-50 м). Максимальная дальность связи при работе со всенаправленной антенной достигает 8 км. Направленные антенны (в условиях прямой видимости) позволяют увеличить дальность связи до 10 км, а с использованием усилителей – до 50 км. Наиболее распространенное в настоящее время оборудование обеспечивает пропускную способность в 2 Мбит/с, хотя встречаются и более высокоскоростные (например, 4 Мбит/c) устройства.

    Типы каналов передачи данных

    Беспроводные каналы

    Спутниковая связь. Применение геостационарных спутников позволяет значительно упростить антенные системы (нет необходимости в приводе, меняющем ориентацию антенны). Четыре геостационарных спутника (расположенные на угловом расстоянии в 90 градусов друг от друга) покрывают всю поверхность Земли. К недостаткам геостационарных спутников относится довольно большая задержка прохождения сигнала (250-300 мс). Спутник связи имеет несколько приемопередатчиков (транспондеров), работающих в разных частотных диапазонах. Количество транспондеров обычно лежит в интервале 12..20, типичная пропускная способность одного транспондера – 50 Мбит/с.

    Типы каналов передачи данных

    Беспроводные каналы

    Типы каналов передачи данных

    Беспроводные каналы

    Воронов Михаил Петрович mstrk@yandex.ru



    написать администратору сайта