Главная страница
Навигация по странице:

  • При решении показательных уравнений

  • Этот метод можно применять только тогда , когда y=h(x) – монотонная функция

  • Можно ли применить этот метод при решении уравнений

  • Разложения на множители

  • Пример

  • ПРИМЕР 1. Решить уравнение

  • Общие методы решения уравнений. Выполнил студент группы тм21 Алмаев Максим Игоревич Общие методы решения уравнений


    Скачать 396.83 Kb.
    НазваниеВыполнил студент группы тм21 Алмаев Максим Игоревич Общие методы решения уравнений
    Дата05.04.2022
    Размер396.83 Kb.
    Формат файлаppt
    Имя файлаОбщие методы решения уравнений.ppt
    ТипДокументы
    #444692

    Выполнил студент группы ТМ-21 Алмаев Максим Игоревич

    «Общие методы решения уравнений»

    1 метод Замена


    уравнением

    уравнения

    При решении показательных уравнений

    (а0, а≠1)

    При решении логарифмических уравнений

    При решении иррациональных уравнений

    Этот метод можно применять только тогда, когда y=h(x) – монотонная функция

    Пример

    =

    ОДЗ:

    -х=15-3х

    +2х-15=0

    Х=-5 х=3

    ОДЗ удовлетворяют все корни

    Ответ: -5;3.


    0

    1

    5

    Можно ли применить этот метод при решении уравнений:

    =

    НЕТ

    у=- немонотонная функция.

    Потеря корня (х=1)

    =

    НЕТ

    у=- немонотонная функция.

    Потеря бесконечного множества корней.

    2 метод Разложения на множители


    заменить

    совокупностью уравнений

    Уравнение

    Необходима проверка корней

    Пример :

    С учётом ОДЗ:

    ОДЗ:

    Ответ:

    3 метод Введения новой переменной


    решаем совокупность уравнений

    Уравнение

    преобразуем к виду:

    вводим новую переменную:

    Пример :

    не удовлетворяет

    Ответ:

    4 метод Функционально - графический

    для решения уравнения

    строим графики функций

    ПРИМЕР 1. Решить уравнение


    Решение.

    2) А(1;1), В(4;2)

    1)

    3) х1=1 ; х2= 4 .

    Ответ: 1; 4.

    ПРИМЕР 2. Решить уравнение

    Решение.

    1) Подбором находим корень х = 2 .

     

    3)

     

     

    Значит, х = 2 – единственный корень.

    Ответ: 2.


    написать администратору сайта