витамины. «Витамины и их роль в обмене веществ». Витамины и их роль в обмене веществ
Скачать 45.32 Kb.
|
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ БАШКОРТОСТАН ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ САЛАВАТСКИЙ КОЛЛЕДЖ ОБРАЗОВАНИЯ И ПРОФЕССИОНАЛЬНЫХ ТЕХНОЛОГИЙ Реферат по физической культуре на тему: «Витамины и их роль в обмене веществ» Выполнила: Студентка 3 курса группы 3 ГД Специальности 43.02.11 Гостиничное дело Хведелидзе Диана Салават 2022г. Содержание Введение 1. История открытия витаминов 2. Общее понятие об авитаминозах; гипо- и гипервитаминозы 3. Классификация витаминов 4. Немного о зелени Заключение Список использованной литературы Введение Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды. Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоренилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер , Фойт и Рубнер .Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи. Практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительны путешествий. Настоящим бичом для мореплавателей долгое время была цинга; от нее погибало моряков больше, чем, например, в сражениях или от кораблекрушений. Так, из 160 участников известной экспедиции Воска де Гама прокладывавшей морской путь в Индию,100 человек погибли от цинги .История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара хвои .Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище. 1. История открытия витаминов Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря открывшем новую главу в науке исследованием русского ученого Николая Ивановича Лунина , изучавшего в лаборатории Г.А.Бунге роль минеральных веществ в питании . Н .И. Лунин проводил свои опыты на мышах, содержавшихся на искусственно приготовленной пище. Эта пища состояла из смеси очищенного казеина (белок молока), жира молока, молочного сахара, солей, входящих в состав молока и воды. Казалось, налицо были все необходимые составные части молока; между тем мыши, находившееся на такой диете, не росли, теряли в весе, переставали поедать даваемый им корм и, наконец, погибали. В то же время контрольная партия мышей, получившая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н .И .Лунин в 1880 г . пришел к следующему заключению: «…если, как вышеупомянутые опыты учат, невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания. Представляет большой интерес исследовать эти вещества и изучить их значение для питания».Это было важное научное открытие, опровергавшее установившееся положения в науке о питании. Результаты работ Н .И. Лунина стали оспариваться; их пытались объяснить, например, тем, что искусственно приготовленная пища, которой он в своих опытах кормил животных, была якобы невкусной. В 1890 г. К.А.Сосин повторил опыты Н.И. Лунина с иным вариантом искусственной диеты и полностью подтвердил выводы Н .И .Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание. Блестящим подтверждением правильности вывода Н .И. Лунина установлением причины болезни бери-бери, которая была особенно широко распространена в Японии и Индонезии среди населения, питавшегося, главным образом, полированным рисом. Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бери, после перевода кур на питание неочищенным рисом болезнь проходила. В 1911 году польский ученый Казимир Функ выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов); оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище. Несмотря на то, что эти особые вещества присутствуют в пище, как подчеркнул ещё Н.И.Лунин, в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ – витаминами (лат, vitamin-амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее, термин «витамины» настолько прочно вошел в обиход, что менять его не имело уже смысла. После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак Коллума, Мелэнби и многих других учёных. В настоящее время известно около 20 различных витаминов. Установлена и их химическая структура; это дало возможность организовать промышленное производство витаминов не только путём переработки продуктов, в которых они содержаться в готовом виде, но и искусственно, путём их химического синтеза. 2. Общее понятие об авитаминозах; гипо- и гипервитаминозы Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называть авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, её называют поливитаминном. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходиться иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминоз легко излечить введением в организм соответствующих витаминов. Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гиповитаминозом. В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простетических или ко ферментных групп. Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможным трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных ко ферментных систем. С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие «замаскированные под витамины» вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен и происходит гибель бактерий. 3. Классификация витаминов В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами .Витамины – необходимый элемент пищи для человека и ряда живых организмов потому, что они не синтезируются или некоторые из них синтезируются в недостаточном количестве данным организмом. Витамины – это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме. Они могут быть отнесены к группе биологически активных соединений, оказывающих своё действие на обмен веществ в ничтожных концентрациях. Витамины делят на две большие группы:1- витамины, растворимые в жирах, и 2-витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами латинского алфавита. Следует обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не вполне отвечает исторической последовательности открытия витаминов. В приводимой классификации витаминов в скобках указаны наиболее характерные биологические свойства данного витамина – его способность предотвращать развития того или иного заболевания. Обычно названию заболевания предшествует приставка «анти», указывающая на то, что данный витамин предупреждает или устраняет это заболевание.Витамины, растворимые в жирах.Витамин A (антиксерофталический).Витамин D (антирахитический).Витамин E (витамин размножения).Витамин K (антигеморрагический) Витамины, растворимые в водеВитамин В1 (антиневритный).Витамин В2 (рибофлавин).Витамин PP (антипеллагрический).Витамин В6 (антидермитный).Пантотен (антидерматитный фактор).Биотин (витамин Н, фактор роста для грибков, дрожжей и бактерий,антисеборейный).Инозит. Пара аминобензойная кислота (фактор роста бактерий и фактор пигментации).Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).Витамин В12(антианемическийвитамин).ВитаминВ15(пангамовая кислота).ВитаминС(антискорбутный).ВитаминР(витамин проницаемости).Многие относят также к числу витаминов холин и непредельные жирные кислоты с двумя и большим числом двойных связей. Все вышеперечисленные растворимые в воде витамины, за исключением инозита и витаминов С и Р, содержат азот в своей молекуле, и их часто объединяют в один комплекс витаминов группы В.Витамин В2 (рибофлавин).Химическая природа и свойства витамина В2.Выяснению структуры витамина В2 помогло наблюдение, что все активно действующие на рост препараты обладали жёлтой окраской и желто-зелёной флуоресценцией. Выяснилось, что между интенсивностью указанной окраски и фактором стимулирующим рост препарата в определённых условиях имеется параллелизм. Вещество желто-зеленной флуоресценцией, растворимое в воде, оказалось весьма распространенным в природе; оно относится к группе естественных пигментов, известных под названием флавонов. К ним принадлежит например флавин молока (лактофлавин). Лактофлавин удалось выделить в химически чистом виде и доказать его тождество с витамином В2.Витамин В2 – желтое кристаллическое вещество, хорошо растворимое в воде, разрушающееся при облучении ультрафиолетовыми лучами с образованием биологически неактивных соединений(люмифлавин в щелочной среде и люмихром в нейтральной или кислой).Витамин В2 представляет собой метилированное производное изоаллоксазина, к которому в положении 9 присоединён спирт рибитол; поэтому витамин В2 часто называют рибофлавином, т.е. флавином, к которому присоединён пятиатомный спирт рибитол:Наличие активных двойных связей в циклической структуре рибофлавина обуславливает некоторые химические реакции, лежащие в основе его биологического действия. Присоединяя водород по месту двойных связей, окрашенный рибофлавин легко превращается в бесцветное лейкосоединение. Последнее, отдавая при соответствующих условиях водород, снова переходит в рибофлавин, приобретая окраску. Таким образом, химические особенности строения витамина В2 и обусловленные этим строением свойства предопределяют возможность участия витамина В2 в окислительно-восстановительных процессах. Содержание витамина В2 в некоторых продуктах и потребность в нем. Витамин В2 широко распространен во всех животных и растительных тканях. Он встречается либо в свободном состоянии (например, в молоке, сетчатке), либо, в большинстве случаев, в виде соединения, связанного с белком. Особенно богатым источником витамина В2 являются дрожжи, печень, почки, сердечная мышца млекопитающих,а также рыбные продукты. Довольно высоким содержанием рибофлавина отличаются многие растительные пищевые продукты. Ежедневная потребность человека в витамине В2, по-видимому, равняется 2-4 мг рибофлавина. Витамин В2 встречается во всех растительных и животных тканях, хотя и в различных количествах. Это широкое распространение витамина В2 соответствует участию рибофлавина во многих биологических процессах. Действительно, можно считать твёрдо установленным, что существует группа ферментов, являющихся необходимыми звеньями в цепи катализаторов биологического окисления, которые имеют в составе своей простетической группы рибофлавин. Эту группу ферментов обычно называют флавиновыми ферментами. К ним принадлежат, например, желтый фермент, диафораза и ци-тохромредуктаза. Сюда же относятся оксидазы аминокислот, которые осуществляют окислительное дезаменирование аминокислот в животных тканях. Витамин В2входит в состав указанных коферментов в виде фосфорного эфира. Так как указанные флавиновые ферменты находятся во всех тканях, то недостаток в витамине В2 приводит к падению интенсивности тканевого дыхания и обмена веществ в целом, а следовательно, и к замедлению роста молодых животных. В последнее время было установлено, что в состав простетических групп ряда ферментов, помимо флавоновой группы, входят атомы металлов(Cu,Fe,Mo). Витамин РР (антипеллагрический витамин, никотинамид).При отсутствии витамина РР (от английского pellagra preventing) в пище, у человека возникает заболевание, получившее название пеллагры. Химическая природа витамина РР. Антипеллагрическим витамином является никотиновая кислота или её амид. Никотиновая кислота была известна химикам ещё с 1867 года, но только 70 лет спустя, было установлено, что это относительно простое и хорошо изученное вещество играет роль важнейшего витамина. Никотиновая кислот представляет собой белое кристаллическое вещество хорошо растворимое в воде и спирте. При кипячении и автоклавировании биологическая активность никотиновой кислоты не изменяется. Активностью антипеллагрического витамина обладает как сама никотиновая кислота, так и амид никотиновой кислоты. По-видимому, в организме свободная никотиновая кислота быстро превращается в амидникотиновой кислоты, который и является истинным антипеллагрическим витамином. Большое количество витамина РР находится в рисовых отрубях, где содержание его доходит почти до 100 мг%. В дрожжах и пшеничных отрубях, в печени рогатого скота и свиней также содержится довольно значительное количество этого витамина. Растения и некоторые микробы, а также, по-видимому, и некоторые животные (крысы)способны синтезировать антипеллагрический витамин и поэтому могут развиваться нормально и без поступления извне. В настоящее время выяснено, что РР может синтезироваться в организме из триптофана; недостаток триптофана в питании или нарушение его нормального обмена играет, поэтому, важную роль в возникновении пеллагры. Человек, по-видимому не обладает достаточной способностью к синтезу антипеллагрического витамина, и доставка никотиновой кислоты или её амида с пищей необходима, особенно при диете, не содержащего ответствующего количества триптофана и пиридоксина, например, при резком преобладании в пищевом рационе кукурузы (маиса). Суточная потребность в этом витамине для людей исчисляется в 15-25 мг для взрослых и 15 мг для детей. Никотиновая кислота, точнее,её амид, играет исключительно важную роль в обмене веществ. Достаточно сказать, что в состав ряда коферментных групп, катализирующих тканевое дыхание, входит амид никотиновой кислоты. Отсутствие никотиновой кислоты в пище приводит к нарушению синтеза ферментов, катализирущих окислительно-восстановительные реакции, и ведет к нарушению механизма окисления тех или иных субстратов тканевого дыхания. Избыток никотиновой кислоты выводится из организма с мочой в виде главным образом N1-метилникотинамида и частично некоторых других ее производных. Витамин В6 (пиридоксин)Вещества группы витамина В6 по своей химической природе являются производными пиридина. Одно из них – пиридоксин (2-метил-3окси-4,5-диокси-метилпиридил) – бело кристаллическое вещество, хорошо растворимое в воде и спирте. Пиридоксин устойчив по отношению к кислотам и щелочам (например, 5 н. концентрации), но легко разрушается под влиянием света при pH=6,8. Содержание витамина В6 в некоторых продуктах и потребность в нём Витамин В6 весьма распространён в продуктах как живого, так и растительного происхождения. Особенно богаты им рисовые отруби, а также зародыши пшеницы, бобы, дрожжи, а из животных продуктов – почки, печень и мышцы. Потребность человека в этом витамине точно не установлена, но при некоторых формах дерматитов, не поддающихся излечению витамином РР или другими витаминами, внутривенное введение 10-100 мг пиридоксина давало положительный лечебный эффект. Предполагают, что потребность организма человека в этом витамине составляет приблизительно 2 мг в день. У человека недостаточность витамина В6, чаще всего, возникает в результате длительного приёма сульфаниломидов или антибиотиков – синтомицина, левомицина, биомицина, угнетающих рост кишечных микробов, в норме синтезирующих пиридоксин в количестве, достаточном для частичного покрытия потребности в нём организма человека. Роль в обмене веществ Два производных пиридоксина – пиридоксаль и пиридоксамин, играют важную роль в обмене аминокислот. Фосфорилированный пиридоксаль (фосфо-пиридоксаль) участвует в реакции переаминирования – переносе аминогруппы с аминокислоты на кетокислоту. Другими словами, система фосфопиридоксаль-фосфопиродоксамин выполняет коферментную функцию в процессе переаминирования.Кроме того, было показано, что фосфопиридоксаль является коферментом декарбоксилаз некоторых аминокислот. Таким образом, две реакции азотистого обмена: переаминирование и декарбоксилирование аминокислот осуществляются при помощи одной и той же коферментной группы, образующейся в организме из витамина В6. Далее установлено, что фосфопиридоксаль играет коферментную роль превращения триптофана, которое, по-видимому, и ведёт к биосинтезу никотиновой кислоты, а также в превращениях ряда серосодержащих и оксиаминокислот. Витамин с (аскорбиновая кислота)К числу наиболее известных с давних времён заболеваний, возникающих на почве дефектов в питании, относится цинга, или скорбут. В средине века в Европе цинга была одной из страшных болезней, принимавший иногда характер повального мора. Наибольшее число жертв цинга уносила в могилу в зимнее и весеннее время года, когда население европейских стран было лишено возможности получать в достаточном количестве свежие овощи и фрукты. Окончательно вопрос о причинах возникновения и способов лечения цинги был разрешен экспериментально лишь в 1907-1912 г. в опыта хна морских свинках. Оказалось, что морские свинки, подобно людям, подвержены заболеванию цингой, которая развивается на почве недостатков в питании. Стало очевидным, что цинга возникает при отсутствии в пище особого фактора. Этот фактор, предохраняющий от цинги, получил название витамина С, антициклонного, или антискорбутного, витамина. Химическая природа витамина С. Химическая природа аскорбиновой кислоты была выяснена после выделения её в кристаллической форме из ряда животных и растительных продуктов, особенно большое значение в ряду этих исследований имели работы А.Сент- Дьердьи и Хэворта. Строение витамина С было окончательно установлено синтезом его из L-ксилозы. Витамин С получил название L-аскорбиновой кислоты. Как видно из формулы, аскорбиновая кислота является ненасыщенным соединением и не содержит свободной карбоксильной группы. Кислый характер этого соединения обусловлен наличием двух фенольных гидроксилов, способных к диссоциации с отщеплением водородных ионов, по-видимому, в основном у третьего углеродного атома. L-Аскорбиновая кислота представляет собой кристаллическое соединение, легко растворимое в воде с образованием кислых растворов. Наиболее замечательной особенностью этого соединения является его способность к обратимому окислению (дегидрированию) с образованием дегидроаскорбиновой кислоты. Таким образом, L-Аскорбиновая кислота и её дегидроформа образуют окислительно-восстановительную систему, которая может, как отдавать, так и принимать водородные атомы, точнее электроны и протоны. Обе эти формы обладают антискорбутным действием. В присутствии широко распространенного в растительных тканях фермента – аскорбиноксидазы, или аскорбиназы, аскорбиновая кислота окисляется кислородом воздуха с образованием дегидроаскорбиновой кислоты и перекиси водорода. Аскорбиновая кислота, особенно её дегидроформа, является весьма неустойчивым соединением. Превращение в дикетоулоновую кислоту, не обладающую витаминной активностью, является необратимым процессом, который заканчивается обычно окислительным распадом. Наиболее быстро витамин С разрушается в присутствии окислителей в нейтральной или щёлочной среде при нагревании. Поэтому при различных видах кулинарной обработки пищи часть витамина С обычно теряется. Аскорбиновая кислота обычно разрушается также и при изготовлении овощных и фруктовых консервов. Особенно быстро витамин С разрушается в присутствии следов солей тяжелых металлов (железо, медь). В настоящее время, однако, разработаны способы приготовления консервированных фруктов и овощей с сохранением их полной витаминной активности.Содержание витамина с в некоторых продуктах и потребность в нём Важно отметить, что большинство животных, за исключением морских свинок и обезьян, не нуждается в получении витамина С извне, так как аскорбиновая кислота синтезируется у них в печени из сахаров. Человек не обладает способностью к синтезу витамина С и должен обязательно получать его с пищей. Потребность взрослого человека в витамине С соответствует 50-100мг аскорбиновой кислоты в день. В организме человека нет сколько-нибудь значительных резервов витамина С, поэтому необходимо систематическое, ежедневное поступление этого витамина с пищей. Основными источниками витамина С являются растения. Особенно много аскорбиновой кислоты в перце, хрене, ягодах рябины, чёрной смородины, землянике, клубнике, в апельсинах, лимонах, мандаринах, капусте (как свежей, так и квашенной), в шпинате. Картофель хотя и содержит значительно меньше витамина С, чем вышеперечисленные продукты, но, принимая во внимание значение его в нашем питании, его следует признать наряду с капустой основным источником снабжения витамином С. Здесь можно напомнить, что эпидемии цинги, свирепствовавшие в средние века в Европе в зимние и весенние месяцы года, исчезли после введения в сельское хозяйство европейских стран культуры картофеля. Необходимо обратить внимание на важнейшие источники витамина С не пищевого характера – шиповник, хвою (сосны, ели и лиственницы) и листья черной смородины. Водные вытяжки из них представляют собой почти всегда доступное средство для предупреждения и лечения цинги. По-видимому, физиологическое значение витамина С теснейшим образом связано с его окислительно-восстановительными свойствами. Возможно, что этим следует объяснить и изменения в углеводном обмене при скорбуте, заключающиеся в постепенном исчезновением гликогена из печени и вначале повышенном, а затем пониженном содержании сахара в крови. По-видимому, в результате расстройства углеводного обмена при экспериментальном скорбут наблюдается усиление процесса распада мышечного белка и появление креатина в моче (А.В.Палладин). Большое значение имеет витамин С для образования коллагенов и функции соединительной ткани. Витамин С играет роль в гидроксилировании и окисления гормонов коры надпочечников. Нарушение в превращениях тирозина, наблюдаемое при цинге, также указывает на важную роль витамина С в окислительный процессах. В моче человека обнаруживается аскорбиновая, дегидроаскорбиновая, дикетогулоновая и щавелевая кислоты, причём две последние являются продуктами необратимого превращения витамина С организме человека.Витамин Р (витамин проницаемости, цитрин)Термин «витамин Р» является собирательным понятием. Этим термином объединяется целая группа веществ, обладающих сходным биологическим действием.Витамин Р находится обычно в тех же растительных продуктах, в которых встречается и аскорбиновая кислота; этим и объясняется, что при цинге обычно наблюдаются симптомы, вызванные отсутствием в пище как аскорбиновой кислоты, так и витамина Р. При отсутствии витамина Р в пище у людей и морских свинок повышается проницаемость кровеносных сосудов, почему этот витамин и получил название витамина Р (витамин проницаемости). Первоначально он был выделен из лимонов в виде весьма активного препарата. Витамин Р вместе с аскорбиновой кислотой оказывает влияние на ход окислительно-восстановительных процессов в организме и тормозит действие гиалуронидазы. Химическая природа витамина Имеется целая группа природных соединений, обладающих свойствами витамина Р. Эти соединения принадлежат главным образом к так называемым флавоновым пигментам – желтым и оранжевым веществам растительного происхождения, относящимся к классу глюкозидов.Практическое значение в настоящее время имеют следующие препараты витамина Р: 1. рутин (глюкозид кверцитрина), получаемый из листьев гречихи; 2. «витамин Р» – препарат, выделяемый из листьев чайного дерева, основным действующим началом которого являются катехин и его галловые эфиры; 3. гесперидин (цитрин), выделяемый из кожуры цитрусовых. Витамин В12 (антианемический витамин, кобаламин)На основании ряда работ было установлено, что в печени животных содержится вещество, регулирующее кроветворение и обладающее лечебным действием при злокачественной (пернициозной) анемии у людей. Уже однократная инъекция нескольких миллионных долей грамма этого вещества вызывает улучшение кроветворной функции. Это вещество получило название витамина В12, или антианемического витамина Химическая природа витамина В12Применение препаратов витамина В12 с лечебной целью обнаружило интересную особенность: витамин В12 оказывает антианемическое действие при злокачественном малокровии только в том случае, если его вводят парентерально, и, наоборот, он малоактивен при применении через рот. Однако если давать витамин В12 в сочетании с нейтрализованным нормальным желудочным соком (который сам по себе не активен), то наблюдается хороший лечебный эффект. Считают, что у здоровых людей желудочный сок содержит белок – мукопротеид – «внутренний фактор» Касла, который соединяется с витамином В12 («внешний фактор»), образуя новый, сложный белок. Витамин В12, связанный в таком белковом комплексе, может успешно всасываться из кишечника. При отсутствии «внутреннего фактора» всасывании витамина В12 резко нарушается. У больных злокачественной анемией в желудочном соке белок, необходимый для образования комплекса с витамином В12, отсутствует.В этом случае всасывание витамина В12 нарушается, уменьшается количество витамина, поступающего в ткани животного организма, и таким путем возникает состояние авитаминоза. Эти данные представили новое объяснение связи, которая существует между развитием злокачественной анемии и нарушением функции желудка. Пернициозная анемия хотя и является авитаминозом, но возникает на почве органического заболевания желудка – нарушения секреции слизистой оболочкой желудка «внутреннего фактора» Касла.По-видимому, витамину В12, точнее кобамидным коферментам, принадлежит важнейшая роль в синтезе, а возможно, и в переносе подвижных метильных групп. В процессах синтеза и переноса одно-углеродистых фрагментов наблюдается связь (механизм которой ещё не выяснен) между фолиевыми кислотами и группой кобаламина. Предполагают, что витамин В12 участвует также в ферментной системе. 4. Немного о зелени Важным условием полноценного питания человека являются не только питательные, но также высокие ароматические и вкусовые свойства пищи. Применение пряных растений в домашней кулинарии позволяет разнообразитьменю, создавать из одних и тех же продуктов блюда, различающиеся по вкусу и аромату.Было замечено, что большинство пряных растений благотворно влияют на ферментативные и обменные процессы в организме, стимулирует не только пищеварительный процесс, но и другие функции, например, выведение из организмов различных шлаков и очищение его от механических и биологических засорений. К тому же пряно вкусовые растения богаты разнообразными витаминами, минеральными солями, микроэлементами, эфирными маслами. Добавление этих растений в небольших количествах в салаты, супы различные приправы повышает не только вкусовую, но и биологическую полноценность пищи, пополняет потребность организма человека в витаминах, минеральных элементах, улучшает усвояемость пищи, создаёт благоприятный физиологический и психологический настрой. Заключение Итак,все жизненные процессы протекают в организме при непосредственном участии витаминов. Витамины играют важнейшую роль в поддержании иммунитета, т.е. они делают наш организм более устойчивыми к болезням.Важная роль витаминов в обменных процессах объясняет, почему при нехватке этих веществ, происходят сбои в организме и возникают болезни. Недостаток витаминов может стать причиной:головной боли,ухудшения зрения,появления вялости, слабости, утомляемости, раздражительностиломкости ногтей, выпадении волос, бессонницы, депрессии,дисбактериозаХронический авитаминоз может стать причиной возникновения серьезных болезней разных систем и органов и даже привести к летальному исходу.Витамины - необходимое условие нормального обмена веществ нашего организма. Не забывайте об этом. Следите за тем, чтобы ваш организм получал эти вещества в нужных количествах, так вы улучшите качество своей жизни. Список использованной литературы. 1. Машковский М.Д. Лекарственные средства. В двух томах. Т.2. – Изд. 13-е, -Харьков: Торсинг, 1998. – 592с. 2. Гаевый М.Д. Фармакотерапия с основами клинической фармакологии. Волгоград, 1996. – 452с. 3. Журнал «Здоровье», №3, март 2014 4. Школьник Ю.К. Человек. Полная энциклопедия. - М.: Эксмо, 2013. 5. Электронный ресурс: http://www.vitamini.ru/ |