Главная страница

Реферат (2). Воздушно компрессорное оборудование. Основные виды и требования, соблюдение тб


Скачать 52.58 Kb.
НазваниеВоздушно компрессорное оборудование. Основные виды и требования, соблюдение тб
Дата23.05.2022
Размер52.58 Kb.
Формат файлаdocx
Имя файлаРеферат (2).docx
ТипРеферат
#544437

Реферат

По дисциплине «МДК»

на тему «Воздушно компрессорное оборудование. Основные виды и требования, соблюдение ТБ»

Выполнил:

Студент III курса

Гавин Артур Владиславович

Елабуга

2022

Содержание

Введение

  1. Назначение и принцип действия…………………………………………6

  2. Классификация……………………………………………………………..6

  3. Виды объемных компрессоров……………………………………………8

    1. Поршневые агрегаты………………………………………………8

    2. Устройства поршневого компрессора и принцип действия…….9

    3. Применение поршневого компрессора на современных предприятиях………………………………………………………11

  4. Мембранный компрессор…………………………………………….....11

  5. Роторные…………………………………………………………………12

    1. Роторные компрессоры подразделяются на несколько подвидов…………………………………………………………..13

      1. Безмасляные…………………………………………………...13

      2. Винтовые……………………………………………………….13

      3. Зубчатые………………………………………………………..13

      4. Спиральные……………………………………………………14

      5. Роторно-пластичные…………………………………………..14

      6. Жидкостно-кольцевые…………………………………………14

  6. Применение объемных компрессоров………………………………….15

  7. Динамичные компрессоры……………………………………………...16

    1. Осевые аппараты………………………………………………….16

    2. Центробежные агрегаты…………………………………………..17

      1. Турбокомпрессоры……………………………………………17

    3. Струйные компрессоры………………………………………….18

  8. Классификация компрессоров по другим параметрам……………….18

  9. Производительность компрессоров……………………………………19

  10. Особенности эксплуатации………………………………………………20

  11. Критерии выбора компрессорного оборудования……………………21

  12. Системы управления компрессорного оборудования……………….21

  13. Бытовые устройства…………………………………………………….22

  14. Общие требования к безопасности компрессорного оборудования..22

  15. Работа компрессорной установки……………………………………….25

Заключение

Список используемой литературы

Введение

Компрессоры – это устройства для создания направленного тока газа под давлением. Компрессорные установки довольно сильно распространены, они широко используются в холодильных установках, в пневматических устройствах, а также в контрольно-измерительной аппаратуре.

Компрессоры, упрощенно, состоят из

1. Электродвигателя или привода;

2. Нагнетающей установки;

3. Емкостей для сжатого газа;

4. Соединительных шлангов и труб.

Электродвигатели применяемые в компрессорных установках могут быть постоянного и переменного тока. Двигатели переменного тока делятся на синхронные и на асинхронные. Асинхронные двигатели в свою очередь на АД с короткозамкнутым ротором и АД с фазным ротором. Для асинхронные двигателей с короткозамкнутым ротором преимуществами для их установки в компрессоре является их экономичность, простота, удобство конструкции и большая надежности работы. Их недостатки это пусковой ток , который в 5 – 7 раз превышает номинальный ток двигателя и малый пусковой момент. Асинхронные двигатели используют гораздо реже (в основном в центробежных насосах). Они используются в маломощных сетях или если требуется значительный пусковой момент (при относительно небольшом пусковом токе). Но у них сложная пускорегулирующая аппаратура и требуется уход за щетками и кольцами. Синхронные двигатели используются в компрессорах большой мощности (более 100 кВт). У них очень высокий коэффициент мощности (cos j = 1 ) и они не очень восприимчивы к изменениям нагрузки. Но в тоже время они значительно дороже асинхронных двигателей и при пуске у них наблюдаются те же недостатки что и у АД с короткозамкнутым ротором. Линейные электроприводы бывают электромагнитными, магнитоэлектрическими и индукционными. У них низкий КПД, но они все равно эффективны (из-за отсутствия кривошипно-шатунного механизма и соответствующих потерь на трение). Они применяются в основном при небольших поршневых усилиях и при малом ходе поршня. Нагнетающие устройства это устройства которые под действием силы приложенной от привода нагнетает газ в специальные емкости , которые способны выдержать то давление которое может создать компрессор. Компрессор очень важная установка она применяется от банальных (охлаждение бытового холодильника) до космических ( охлаждение жидкостных ускорителей ракетоносителя).


  1. Назначение и принцип действия

Что такое компрессор? Официальное определение звучит следующим образом — устройство, предназначенное для сжатия газов и перекачивания их к потребителям, называют воздушным компрессором. Как он работает? Принцип действия устройства довольно прост, атмосферный воздух поступает в механизм, который выполняет его сжатие. Для этого могут быть использованы разные методы, о них речь пойдёт ниже. Механизм, сжимающий воздух, определяет устройство и принципы работы компрессора. Для эффективной работы оборудования его необходимо подключить к электрической сети и воздушной сети, по которой будет передаваться сжатый воздух. Схема подключения электродвигателя, как правило, указывается в инструкции по эксплуатации.

  1. Классификация

Компрессоры, различные по давлению, производительности, сжимаемой среде, условиям окружающей среды, имеют большое разнообразие конструкций и типов. Компрессоры классифицируются по ряду характерных признаков.По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, энергетические, общего назначения и т. д.), по роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый и т. д.). По способу отвода теплоты — с жидкостным или воздушным охлаждением. По типу приводного двигателя  — с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. Если компрессор приводятся во вращение от турбины, то он называется турбокомпрессор. По принципу действия компрессоры подразделяются на объёмные, лопастные (лопаточные) и термокомпрессоры. Под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора.

Объёмный компрессор — это машина, в которой процесс сжатия происходит в рабочих камерах, изменяющих свой объём периодически, попеременно сообщающихся с входом и выходом компрессора. Объёмные машины по геометрической форме рабочих органов и способу изменения объёма рабочих камер можно разделить на поршневые, мембранные и роторные (винтовые, ротационно-пластинчатые, жидкостно-кольцевые, с катящимся ротором, газодувки Рутс (насос Рутса), спиральные) компрессоры. Поршневые компрессоры (при высоких давлениях сжатия применяются также плунжерные) могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения). К объёмным машинам с вращающим сжимающим элементом (роторным машинам) относятся: винтовые компрессоры, ротационно-пластинчатые, жидкостно-кольцевые и другие конструкции компрессорных машин.

Лопастной или лопаточный компрессор — машина динамического действия, в которой сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей. Характерной особенностью лопастных машин является отсутствие пульсации развиваемого ими давления. К лопастным относятся осерадиальные, осевые и вихревые машины.

По конечному давлению различают:

  • вакуум-компрессоры, газодувки — машины, которые отсасывают газ из пространства с давлением ниже атмосферного или выше;

  • компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа, среднего — от 1,2 до 10 МПа, и высокого — от 10 до 100 МПа

  • компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.

  1. Виды объемных компрессоров

    1. Поршневые агрегаты

Поршневые компрессоры — это один из самых распространённых типов этого оборудования. Как уже отмечалось выше сжатие воздуха, происходит под действием поршней, перемещающихся внутри гильз. Для обеспечения нужд промышленности применяют поршневые компрессоры высокого давления. Они могут работать как от двигателя внутреннего сгорания, так и от электрического двигателя. Промышленный компрессор высокого давления создаёт от 40 до 500 бар. Компрессоры этого типа отличаются высоким КПД и моторесурсом до 2000 часов. Поршневые компрессоры производят как в стационарном, так и в мобильном исполнениях. Для их перемещения используют шасси на колесном или гусеничном ходу. Это довольно сложное устройство, в его конструкции предусмотрены маслосъемные кольца, фильтры для очистки масла и воздуха, управляющая автоматика и это обуславливает то, что для поддержания этого устройства в работоспособном состоянии требуется квалифицированный персонал и специальный инструмент и приспособления.

    1. Устройство поршневого компрессора и принцип его действия

 Другим видом компрессорных систем, широко используемых в быту и на небольших предприятиях, является оборудование поршневого типа. Главным отличием такой установки от винтового и других типов оборудование является достаточно простое устройство поршневого компрессора и принцип его работы.

Основные элементы данной установки можно разделить на группы в зависимости от выполняемых функций:

  • цилиндровая группа;

  • поршневая группа;

  • механизмы движения;

  • системы регулирования, представляющие собой элементы, регулирующие производительность оборудования – трубопроводы, вспомогательные клапаны;

  • системы смазки;

  • элементы охлаждения;

  • детали для установки оборудования.

Конструктивно поршневой компрессор представляет собой корпус, выполненный из чугуна, алюминия или же другого материала и оснащенный цилиндром, расположение которого может быть как вертикальным, так и горизонтальным. Основную подвижную и рабочую часть компрессора составляет сам поршень и два клапана, выполняющие всасывающие и нагнетательные функции. Основу работы данного оборудования составляет движение поршня – поступательные движения приводят к всасыванию воздуха в цилиндр, а при возвратном действии воздух сжимается. Данный процесс и приводит к увеличению силы давления. В этот момент происходит закрытие клапана всасывающего действия, а нагнетательный клапан подает в магистраль сжатый воздух. Данный цикл повторяется на протяжении всего периода работы оборудования, обеспечивая пневмоинструменты воздухом под давлением необходимого уровня. Устройство компрессора воздушного поршневого отличается своей сравнительной простотой в сочетании с высокими рабочими и эксплуатационными характеристиками. Учитывая устройство компрессоров поршневых и винтовых, их конструктивные, технические и эксплуатационные особенности, можно легко выбрать наиболее подходящий тип оборудования в соответствии с предъявляемыми к ним требованиями и для использования с различными пневмоинструментами при проведении как промышленных, так и бытовых работ.

    1. Применение поршневых компрессоров на современных предприятиях

Использование поршневых компрессоров в промышленности стартовало еще в начале прошлого столетия. Это один из первых изобретенных типов компрессоров, который способствовал прогрессу и развитию производственных мощностей, с которыми мы имеем дело на сегодняшний день. Область применения компрессоров, которые используют силу движения поршня при сжатии рабочих сред, достаточно многообразна. В поршневых компрессорах, сжатие среды происходит вследствие движения поршня. Когда компрессор работает, поршень движется вверх и вниз в цилиндре. Система клапанов используется, чтобы впустить сжимаемую среду в агрегат и выпустить затем сжатую среду. Область применения определяется в первую очередь наличием неоспоримых преимуществ компрессоров данного типа.

Преимущества поршневых компрессоров:

1. создание высокой степени сжатия (нижняя граница производительности без ограничений)

2. высокий кпд

3. относительная умеренная стоимость

4. техническое обслуживание удобно (простое внутреннее устройство)

5. возможность использования в качестве дожимного оборудования

Благодаря этим преимуществам можно предположить, что поршневой компрессор для воздуха или газа ещё долго будут использовать во многих технологических процессах в различных предприятиях. Поршневые промышленные компрессоры используют в таких технологических процессах, где актуальны высокая надежность и работоспособность при длительной непрерывной эксплуатации. Создание безцилиндровой смазки открыло новые перспективы в применении поршневых компрессоров. В этом случае произошла смена уплотнителей поршня и сальников на самосмазываемый тип, с применением композиционных материалов, что в результате предотвращает износ цилиндров и штоков и как следствие обеспечивает правильно функционирующий технологический процесс на производстве. Многие нефтеперерабатывающие заводы практикуют использование компрессоров без смазки цилиндров и сальников. Применение поршневых сухих компрессоров при производстве пропилена оправданно т.к не происходит адсорбирования масла на алюмогеле в процессе осушки пропилена. Поршневые компрессоры хорошо зарекомендовали себя при работе со сжатым воздухом - важнейшим ресурсом большинства промышленных предприятий. Бесперебойное производство сжатого воздуха основное условие для нормального функционирования предприятия в целом. Когда существует небольшая потребность в сжатом воздухе, актуальным становится использование полупрофессиональных поршневых установок и бытовых поршневых компрессоров. Бытовые поршневые компрессоры обычно используют в мастерских, занимающихся ремонтом, на станциях техобслуживания автомобильного транспорта, при строительных работах.

  1. Мембранный компрессор

Газ сжимается в таком устройстве под действием мембраны, которая выполняет возвратно — поступательное движение. Мембрану приводит в движение шток, который закреплён на коленвале. Мембранная пластина фиксируется к рабочей камере и таким образом отпадает необходимость использования дополнительных деталей, например, поршневых колец, уплотнительных устройств и пр.

Воздушный компрессор мембранного типа отличается следующими параметрами:

  • герметичностью;

  • стойкостью к действию коррозии;

  • высоким уровнем компрессии;

  • надежностью конструкция;

  • безопасностью в эксплуатации и простотой обслуживания.

Компрессор с ременным приводом мембранного типа отличается тем, что рабочая среда вступает в контакт только с мембраной и внутренними полостями камеры. При этом она не вступает в контакт с атмосферой. Такое устройство применяют для перекачки вредных и токсичных веществ.

  1. Роторные

В роторных компрессорах сжатие воздуха происходит вращающимися элементами — роторами. Каждый элемент в зависимости длины и шага винта имеет постоянное значение сжатия, которое также зависит и от формы отверстия для выхода газа. В таких компрессорах клапаны не устанавливаются. Также конструкция агрегата не содержит узлов, способных вызвать разбалансировку. Благодаря этому он может работать с высокой скоростью вращения ротора. При такой конструкции аппарата величина потока газа достигает высоких значений при небольших габаритах самого компрессора

    1. Роторные компрессоры подразделяются на несколько подвидов.

      1. Безмасляные

Имеют ассиметричный профиль винта, повышающий КПД агрегата благодаря уменьшению утечек при сжатии газа. Для обеспечения синхронного встречного вращения роторов применяют внешнюю зубчатую передачу. Во время работы роторы не соприкасаются, и смазка им не требуется, поэтому выходящий из агрегата воздух не имеет никаких примесей. Для уменьшения внутренних утечек детали агрегата и корпус изготавливаются с высокой точностью. Также безмасляные аппараты могут быть многоступенчатыми, чтобы убрать разность температур воздуха на входе и выходе аппарата, которая ограничивает повышение давления.

      1. Винтовые

Состоят из одного или нескольких винтов, которые находятся в зацеплении, установленных в герметичном корпусе. Рабочее пространство создается между корпусом и винтами при их вращении. Данный вид компрессоров отличается хорошей производительностью и беспрерывной подачей воздуха. Для снижения трения между входящими в зацеп винтами, которое увеличивает износ деталей, применяется смазка. Если требуется получить сжатый воздух (газ) без примесей смазочных материалов, то применяются безмасляные винтовые аппараты. В последних, чтобы уменьшить силу трения, подвижные детали изготавливаются из антифрикционных материалов.

      1. Зубчатые

Данные компрессоры еще называют шестеренчатыми, поскольку их главными деталями являются шестерни. Они при работе вращаются в противоположных направлениях, создавая между зубьями и стенками корпуса рабочую камеру. При вхождении зубьев в зацепление на стороне выходного отверстия агрегата происходит уменьшение объема камеры, вследствие чего воздух под давлением выходит через патрубок. Компрессоры данного типа нашли широкое применение в ситуациях, когда не требуется подача воздуха или газа под высоким давлением.

      1. Спиральные

Это разновидность безмасляных компрессоров роторного типа. Спиральные аппараты также сжимают газ в объеме, который уменьшается постепенно. Главными элементами данного аппарата являются спирали. Одна спираль закреплена неподвижно в копрусе устройства. Другая подвижная, соединена с приводом. Сдвиг по фазе между спиралями равняется 180°, благодаря чему происходит образование воздушных полостей с изменяемым объемом.

      1. Роторно-пластинчатые

Пластинчатый компрессор имеет ротор с прорезанными пазами. В них вставлено определенное количество подвижных пластин. Как видно из рисунка, приведенного ниже, ось ротора с осью корпуса не совпадает. Пластины при вращении ротора перемещаются центробежной силой от его центра к периферии и прижимаются к внутренней поверхности корпуса. В результате происходит непрерывное создание рабочих камер, ограниченных соседними пластинами и корпусами ротора и аппарата. За счет смещенных осей изменяется объем рабочих камер.

      1. Жидкостно-кольцевые

В данных агрегатах используюется вспомогательная жидкость. В статически закрепленном корпусе аппарата устанавливается ротор с пластинами. Конструкционные особенности данного аппарата – это смещенные оси ротора и корпуса относительно друг друга. В корпус заливается жидкость, которая принимает форму кольца, прижимаясь к стенкам аппарата вследствие отбрасывания ее лопастями ротора. При этом происходит ограничение рабочего пространства, наполненного газом, между жидкостным кольцом, корпусом и лопатками ротора. Объем рабочих камер изменяется посредством вращающегося ротора со смещенной осью.

  1. Применение объемных компрессоров

Объемные компрессоры широко используются для технологических процессов, где требуется сжатие воздуха, технологических газов и хладогентов. Компрессоры объемного типа можно встретить на химических производствах, в сельском хозяйстве, в электронике, металлургии, в пищевой промышленности, фармацевтической промышленности, в пневмотранспорте и прочих. Объемные компрессоры применяются как при добыче газа так и при улавливании паров, когда требуется транспортировка рабочих сред. Компрессоры объемного типа используется для областей применения, где условия для технологических газов и состав газа могут варьироваться, в этом случае чаще всего применение находят безмасляные винтовые компрессоры. Винтовые компрессоры также хороший выбор там, где требуется экономичная работа. Они могут легко обрабатывать газы с содержанием примесей, сжиженный газ, топливный газ. Для создания воздуха низкого давления, перемещения природного газа, подаче газа высокого давления во время бурения скважин и для различных областей применения при производстве или химических процессах, которые требуют воздух среднего или высокого давления применяют также представителя объемного типа компрессоров - большие многоцилиндровые многоступенчатые поршневые компрессоры. Эти компрессоры могут применяться на месторождениях и иметь дистанционное управление или на входе газовой установки, где происходит сжатие сырого, влажного (с содержанием воды или углеводородов) и возможно кислого (с содержанием сероводорода) природного газа. Эти компрессоры устанавливают также на разгрузочном конце газовой установки, где сжимается полностью чистый и сухой газ для потребителей и подается в магистраль.

  1. Динамические компрессоры

Компрессоры этой группы подразделяют на два типа — центробежные и осевые. У первых, воздух под воздействие центробежной силы отбрасывается к внешней части рабочего колеса. Таким образом, с всасывающей стороны образуется разреженное пространство. Газ постоянно попадает в рабочую камеру, после прохождения колеса, воздух направляется в диффузор (устройство гашения скорости потока), где, собственно, и повышается его давление. У оборудования осевого типа воздух продвигается вдоль ротора, а сжатие осуществляется в результате изменения скорости его продвижения между лопатками ротора и направляющего устройства.

Эти компрессоры можно классифицировать по следующим свойствам:

  1. Давлению на выходе, те, которые обеспечивают давление в пределах 0,015 МПа, называют вентиляторами или воздуходувками.

  2. По количеству ступеней сжатия.

  3. По ходу движения воздуха. Если он двигается вдоль оси ротора, то это центробежные, если поперёк, то осевые. Существуют устройства, где воздух движется по диагонали.

  4. По типу привода — он может быть электрическим, паровым или газотурбинным.

    1. Осевые аппараты

В осевых компрессорах поток газа движется вдоль оси вращения вала через неподвижные направляющие и подвижные рабочие колеса. Скорость потока воздуха в осевом аппарате набирается постепенно, а преобразование энергии происходит в направляющих.

Для осевых компрессоров характерны:

  • высокая скорость работы;

  • высокий КПД;

  • высокая подача потока воздуха;

  • компактные размеры.

    1. Центробежные агрегаты

Центробежные компрессоры имеют конструкцию, обеспечивающую радиальный выходной поток воздуха. Поток воздуха, попадая на вращающееся рабочее колесо с радиально расположенными крыльчатками, за счет центробежных сил выбрасывается к стенкам корпуса. Далее, воздух перемещается в диффузор, где и происходит процесс его сжатия. Центробежные аппараты не имеют узлов с возвратно-поступательными движениями, поэтому обеспечивают равномерный поток воздуха, силу которого можно регулировать. Также данный тип агрегатов отличается долговечностью и экономичностью.

      1. Турбокомпрессоры.

Турбокомпрессоры — это центробежные компрессорные машины, работающие по такой же схеме, как центробежные насосы. Применяют их преимущественно при подаче относительно больших количеств газа или воздуха под небольшим давлением (0,15— 1,0 МПа). Ввиду того, что плотность воздуха значительно меньше плотности капельных жидкостей, степень сжатия p2/p1 в одной ступени турбокомпрессора не превышает значений 1,2—1,3 при обычно применяемых окружных скоростях на ободе рабочих колес 2= 150—200 м/с. Для получения более высоких степеней сжатия 1,6—1,8 необходимо довести окружную скорость до 400 м/с, что связано с применением стали высокого качества для изготовления рабочих колес. Часто для увеличения степени сжатия воздуха применяют многоступенчатые машины с сохранением обычных окружных скоростей.

    1. Струйные компрессоры

В аппаратах струйного принципа действия для увеличения давления газа (пассивного) используется энергия активного газа. Для этого к устройству подводится 2 потока газа: один с низким давлением (пассивный), а второй – с высоким (активный). На выходе из устройства образуется газовый поток с давлением выше пассивного, но меньшим, чем у активного газа.

  1. Классификация компрессоров по другим параметрам

Кроме классификации компрессоров по принципу сжатия, принято разделять данные агрегаты по следующим параметрам:

  1. Тип привода. Компрессоры могут работать как с электродвигателями, так и с двигателями внутреннего сгорания (ДВС). Соответственно, аппараты бывают с прямой передачей (коаксиальные) и с ременным приводом. Как правило, компрессор с прямым приводом – это агрегат бытового назначения. Коаксиальный компрессор привлекает потребителя доступной ценой и широко используются на дачах в гаражах и т.д., поскольку давление воздуха, выдаваемое аппаратом, не превышает 0,8 МПа. Если сравнивать бензиновый и дизельный компрессор, то последний является более надежным в эксплуатации. Также дизель имеет более простое устройство и легок в обслуживании.

  2. Система охлаждения. Аппараты бывают с жидкостным и воздушным охлаждением или вообще без него.

  3. Условия эксплуатации. Аппараты могут быть стационарными, работающими только в помещении от электросети, и передвижными (переносными), работа которых допускается на открытом воздухе и при низких температурах. Например, передвижные компрессоры с двигателем внутреннего сгорания широко используются в местах, где нет централизованного электроснабжения.

  4. Конечное давление. По данному параметру аппараты подразделяют на четыре группы. Агрегаты низкого давления (0,15-1,2 МПа) используются в составе установок для сжатия газов (воздуха). Устройства среднего давления (1,2-10 МПа) применяются для разделения, транспортировки и сжижения газов в нефтеперерабатывающей, газовой и химической промышленности. Аппараты высокого давления (10-100 МПа) и сверхвысокого давления (свыше 100 МПа) используются в установках для синтеза газов.

  5. Производительность. Указывается в единицах объема за определенных промежуток времени (м3/мин). Производительность агрегата напрямую зависит от таких параметров, как скорость вращения вала, диаметр цилиндра, длина хода поршня. По производительности принято разделять аппараты на 3 категории: малая – до 10 м3/мин; средняя – от 10 до 100 м3/мин; большая – свыше 100 м3/мин

  1. Производительность компрессоров

Под этим термином подразумевается тот объем газа, который нагнетается за определенную единицу времени. Единица измерения производительности — м3 в минуту. Этот параметр может быть указан или на входе, или на выходе, разумеется, это будут разные числа. Все дело в том, что при изменении давления, происходит изменение объема. Эта характеристика говорит о производительности при температуре рабочей среды равной 20 градусам Цельсия. В зависимости от величины этой характеристики различают следующие группы — большой производительности (свыше 100 кубометров воздуха в минуту), средней (до 100 кубометров воздуха в минуту) и малой до (10 кубометров). Динамические устройства обладают некоторыми преимуществами в сравнении с поршневыми. Они отличаются простотой конструкции и эксплуатации. Они обладают малыми габаритно-весовыми параметрами. Плавностью подачи воздуха и они не требуют дополнительной смазки. Для их установки не требуется изготовление массивных фундаментов. Но, вместе с этим, у них КПД, несколько ниже, чем у поршневых. Эти компрессоры нашли свое применение во многих отраслях. Например, химической и нефтегазовой промышленности, в металлургии, горнодобывающей и многих других отраслях. Одна из разновидностей динамических компрессоров — турбокомпрессорные, устанавливают в газоперекачивающие трубопроводы.

  1. Особенности эксплуатации

Штатная работа компрессора прежде зависит от работы всех его узлов и деталей. В частности, впускных и выпускных клапанов. Внутри компрессора, где происходит распределение воздуха, устанавливается определенное количество золотников, распределителей и клапанов. В компрессорах устанавливают клапана следующих типов — тарельчатые, пластинчатые, шпиндельные и пр. Для того чтобы оборудование не снижало показатели мощности и не расходовал лишнюю мощность, клапаны, которые установлены в компрессоре, должны быть притерты и не должны пропускать воздух. При их выработке клапанов их необходимо срочно заменить. Повышенный расход воздуха может рано или поздно привести к сокращению срока эксплуатации оборудования. Запаздывание срабатывания клапана приводит к появлению стуков, стук говорит о том, что происходит износ посадочного места. Ко всему прочему, стук может говорить о том, что произошло защемление верхней его части в корпусе.

  1. Критерии выбора компрессорного оборудования

Чем должен руководствоваться потребитель, выбирая воздушный компрессор. Самое главное он должен понимать, для каких целей будет использовано приобретаемое оборудование. Сразу надо оговориться, что существуют отдельные отрасли, и технологические операции могут быть использованы только компрессоры, работающие без масла.

Ключевыми параметрами компрессорного оборудования являются:

  1. Расход воздуха (производительность).

  2. Рабочее давление.

  3. Требования к чистоте воздуха.

Как правило, эти параметры должны быть определены инженерами — технологами, которые разрабатывают технологические процессы с участием компрессорного оборудования.

  1. Системы управления компрессорного оборудования

Для обеспечения того, чтобы воздух находился под постоянным давлением в компрессорных системах, устанавливают регулирующее оборудование. Самая простая система состоит из датчика давления и простейшей системы настройки.  Она позволяет поддерживать в ресивере постоянное давление. При превышении заданных параметров происходит отключение компрессора, а после того, как давление упало до определенного минимума, срабатывает автоматика и включает компрессор. Такие, или почти такие системы, устанавливают практически на всех компрессорных установках. Их наличие обеспечивает безопасную эксплуатацию оборудования.

  1. Бытовые устройства

Для выполнения определенных работ, которые выполняют дома или в гараже применяют бытовые компрессоры. Как правило, это небольшие по размеру поршневые компрессоры с электроприводом. Мощность такого изделия составляет 2,2 кВт. Такие компрессоры в состоянии нагнетать воздух до 8 атм

  1. Общие требования к безопасности компрессорного оборудования

Устройство компрессорного оборудования (размещение агрегатов, узлов, систем управления и др.) должно обеспечивать удобство и безопасность монтажа, эксплуатации, технического обслуживания и ремонта. Все движущиеся, вращающиеся и токоведущие части компрессорного оборудования, электродвигателей и вспомогательных механизмов должны быть ограждены. Конструкция компрессорного оборудования, вспомогательных систем и узлов, входящих в состав компрессорной установки, должна исключать возможность накопления и разряда статического электричества. Компрессорное оборудование должно быть герметично, не допускать образования в воздухе рабочей зоны вредных веществ, превышающих предельно допустимую концентрацию. Общие требования к шумовым характеристикам компрессорного оборудования, допустимые уровни шума на рабочих местах и в зоне обслуживания компрессоров изложены в 144J. Общие требования к вибрационным характеристикам компрессорного оборудования, гигиенические нормы вибрации на рабочих местах и в зоне обслуживания компрессоров изложены в. Поверхности работающего компрессорного оборудования, подверженные нагреву, расположенные в местах нахождения людей (рабочих местах и местах основного прохода), должны иметь теплоизоляцию или быть ограждены устройствами, исключающими случайное прикосновение к наружным поверхностям обслуживающего персонала. Температура доступных для прикосновения наружных поверхностей не должна превышать +45 °С, кроме компрессорного оборудования, работающего при температуре окружающей среды свыше +40 °С. Окна и проемы на наружных поверхностях сборочных единиц компрессорного оборудования, необходимых для сборки, монтажа, испытаний, осмотров и регулировок узлов механизма движения и цилиндро-поршневой группы, должны снабжаться надежно закрывающимися люками, крышками, заглушками или ограждениями. Резьбовые соединения движущихся сборочных единиц рабочих органов компрессорного оборудования должны иметь стопорящие устройства для предотвращения произвольного отвинчивания. Конструкция цилиндропоршневой группы и механизма движения компрессорного оборудования должны обеспечивать возможность контроля и регулирования распределения линейных мертвых пространств в полостях сжатия цилиндров. Для обеспечения свободы упругих и температурных деформаций горизонтально расположенные цилиндры крупных поршневых компрессоров рекомендуется снабжать опорами скользящего или качающегося типа. Конструкция цилиндра должна допускать свободу линейных температурных деформаций втулки. Смазывающие масла и жидкости, применяемые для смазки рабочих органов компрессорного оборудования (цилиндры, сальниковые уплотнения поршневых компрессоров, узлы трения центробежных компрессоров и т.п.), должны сохранять свои качества в среде сжигаемого газа. Для уплотнений допускается применять материалы, не требующие смазки. Конструкция системы охлаждения компрессорного оборудования должна исключать контакт охлаждающей жидкости со сжимаемым газом, кроме компрессоров, охлаждение которых осуществляется впрыском жидкости в полости сжатия. Конструкция сборочных единиц системы жидкостного охлаждения должна иметь устройства, обеспечивающие слив жидкости из полостей охлаждения. Газопроводы компрессорного оборудования должны выполняться в зависимости от свойств сжимаемого газа и отвечать требованиям. Газопроводы и газовые полости аппаратов, в которых возможно скопление жидкостей (конденсата), должны иметь устройства для их удаления. Конструкция органов управления должна обеспечивать безопасность и удобство выполнения операций, связанных с управлением компрессорным оборудованием, и отвечать эргономическим требованиям стандартов системы «человек — машина». Конструкция органов управления должна исключать самопроизвольное включение или выключение компрессорного оборудования. Конструкция органов управления компрессорного оборудования, работающего во взрывоопасных помещениях, должна исключать искрообразование в движущихся частях. Компрессорные установки должны снабжаться приборами, обеспечивающими контроль параметров сжатия газа, режимов работы компрессорного оборудования и его систем. Рекомендуется применение приборов дистанционного контроля параметров. Все установленные контрольно-измерительные приборы должны проходить государственные испытания. Конструкция компрессорного оборудования должна обеспечивать применение метрологических средств для контроля работоспособности и определения технического состояния компрессоров при эксплуатации и ремонте. При установке приборов на высоте от 2 до 5 м от уровня площадки обслуживания диаметр корпусов приборов должен быть не менее 150 мм. Не допускается установка приборов, с которых считываются показания, на высоте более 5 м от уровня площадки обслуживания. Компрессорное оборудование должно иметь звуковую и световую сигнализацию в объеме, соответствующем нормам и правилам, утвержденным органами государственного надзора. Сигнализация должна включаться при выходе за пределы, установленные стандартами и техническими условиями на конкретные виды компрессоров, параметров сжатия газа, режимов работы систем охлаждения и смазки. Органы управления, средства сигнализации должны снабжаться знаками или надписями, характеризующими состояние объекта управления. Поверхности ограждений, защитных устройств, а также элементы компрессорного оборудования, могущие служить источниками опасности для работающих, должны иметь знаки безопасности и сигнальные цвета.

  1. Работа компрессорной установки

Работа компрессорной установки состоит из нескольких последовательных этапов:
   во время всасывания воздух через воздушный фильтр попадает в рабочую полость цилиндра первой ступени
   после сжатия в цилиндре, воздух через нагнетательный клапан поступает в охладитель
   охлажденный в охладителе воздух направляется в цилиндр второй ступени и так далее пока не дойдет до последнего охладителя.
   далее воздух попадает на маслоудалитель, в котором конденсат и масло удаляются методом периодической продувки.

Заключение

В заключении, необходимо отметить, что компрессоры довольно широко распространены в любых отраслях и в наше время. Любой тип компрессора имеет свою область применения, свои уникальные характеристики, что позволяет им оставаться востребованными и по сей день. Но прогресс не стоит на месте и необходимо разрабатывать все новые и более усовершенствованные установки.

Мы выяснили, что компрессоры применяются в различных отраслях, где необходим сжатый воздух

- Компрессоры применяются для транспортировки природного газа в трубопроводе. Так, газ перемещают от места производства к потребителю.

- Широко компрессоры применяются на нефтеперерабатывающих заводах, на заводах по переработке природного газа, нефтехимических и химических заводов, а также аналогичных крупных промышленных предприятий, где необходимо сжатие промежуточных и конечных продуктов газов.

- Компрессор применяются в системах охлаждения воздуха.

- Компрессор применяются для заправки газом баллонов высокого давления как для медицинских целей так и для сварки.

- Во многих производственных и строительных процессах компрессоры применяются как источник питания пневматических инструментов и т.д.

На сегодня компрессоры используют практически во всех сферах промышленной деятельности. Без компрессора на сегодня невозможна работа целых промышленных комплекс.

Список использованной литературы

1. Абдурашитов С. А. Насосы и компрессоры. -- М.: Недра, 1974.

2. Воронецкий А. В. Современные центробежные компрессоры. -- М.: Премиум Инжиниринг, 2007.

3. Михайлов А. К., Ворошилов В. П., «Компрессорные машины» М.: Энергоатомиздат, 1989.

4. Френкель М. И. Поршневые компрессоры. -- М.-Л.: Машгиз, 1960.

5. Воронецкий А.В. Современные компрессорные станции (Концепции, проекты, оборудование). -- М.: ООО «Премиум Инжиниринг», 2008.

6. Пластинин П.И. Поршневые компрессоры. Том.1. Теория и расчет / 2-е изд. переработано и доп. -М.: Колос, 2000.

7. Захаренко С.Е., Анисимов С.А., Дмитревский В.А. и др. Поршневые компрессоры. - М.;Л. Машгиз, 1961.

8. Сафин А.Х. Тенденции в технико-экономической структуре производства и развитии компрессорного оборудования. - Компрессорная техника и пневматика. 2002.

9. Гриб В.В., Сафонов Б.П., Жуков Р.В. Динамика механизма движения поршневого компрессора с учетом зазоров в подвижных соединениях. - Вестник машиностроения. 2002.

10. Береснев В.Н. Некоторые результаты исследований виброхарактеристик поршневого компрессора // Машины и аппараты холодильной техники и кондиционирования воздуха. - Л.,1978


написать администратору сайта