Главная страница
Навигация по странице:

  • 1. Преднаука и наука в собственном ее смысле.

  • Возникновение науки и основные стадии ее развития. Возникновение науки и основные стадии ее развития


    Скачать 67.69 Kb.
    НазваниеВозникновение науки и основные стадии ее развития
    Дата03.12.2019
    Размер67.69 Kb.
    Формат файлаdocx
    Имя файлаВозникновение науки и основные стадии ее развития.docx
    ТипДокументы
    #98252
    страница1 из 3
      1   2   3

    Возникновение науки и основные стадии ее развития

     

    1. Преднаука и наука в собственном ее смысле.

    2. Культура античного полиса и становление первых форм теоретической науки.

    3. Специфические особенности средневековой культуры и науки.

    4. Новоевропейская культура и становление опытной науки.

    5. Революция в естествознании конца XIX – начала XX вв. и становление неклассической науки.

    6. Возникновение дисциплинарно организованной науки. Наука как профессиональная деятельность. Формирование технических наук.

      

    1. Преднаука и наука в собственном ее смысле.

    Наука, являясь своеобразной формой духовного производства, не может быть представлена как нечто раз и навсегда данное, неизменное – она имеет свою историю, то есть прошлое, настоящее и будущее. 

    В истории науки обычно выделяют две стадии: возникновения и стадию собственно науки. В свою очередь, стадия возникновения науки включает в себя период донауки и преднауки. 

    Донаучные знания о мире отражены в мифологии. Характерной особенностью донаучного, мифологического отношения к миру является отсутствие представлений о разделении реального и нереального, объективного и субъективного, подлинного и мнимого – в нем все едино, слитно. В мифологическом сознании предмет сливается с его образом, однако этот образ мог меняться, и, в свою очередь, предмет, его отражающий, также менялся, как бы «оборачивался», претерпевая различные, в том числе и не свойственные ему, трансформации. Отсюда проистекает и еще одна особенность восприятия мира в мифологическом смысле – дубликация миров, способность помимо «видимого» мира «видеть», угадывать и «невидимый мир». Причиной такого восприятия мира являлась опора на чувственную наглядность, на изменчивость, нестабильность чувств, на духовно-личностное отношение к действительности. В нем наличествует непосредственная проекция чувств, переживаний, человеческих страстей на действительность, тождество человека и действительности. Всякое событие в мифологическом сознании представлялось как одухотворенное, а потом символизирующее нечто в отношении к воспринимающему его субъекту, как знак чего-то за ним скрытого и имеющего отношение к субъекту, связанного с ним. Отсюда «угадывание» связи субъекта и действительности по принципу «причина – значение», а не «причина – следствие», как это характерно для научного мышления. 

    Прошло немало времени, прежде чем в рамках мифологического познания мира произошли трансформации, в результате которых сформировалось представление о действительности как о некоем «вещном», «внесубъективном» объекте, самодостаточном и обладающем внутренней организацией. Наметился важнейший для истории науки, да и человечества, сдвиг в восприятии мира как чего-то внеположенного субъекту, а потому и апелляция к его природным, вещественным основаниям, что потребовало умения размышлять о нем, выстраивать  конструкции по типу «причина – следствие». Так совершился скачок от чувственно-слитного, антропоморфного и анимаморфного мира психической реальности к миру, в котором субъект и природный, «вещный» мир разделены, и этот, второй, не зависит от первого, а «живет» по собственным законам, познание которых основано на рациональных комплексах и аргументах и ориентировано на объективный мир.

     

    Следующий этап развития донаучного знания определяют как переход от логоса к преднауке. Наиболее ярко этот процесс проявил себя в древневосточных цивилизациях – Египте, Месопотамии, Индии, Китае. 

    Обнаруженные древневавилонские тексты, богатый археологический и этнографический материал свидетельствуют о том, что восточная цивилизация располагала достаточным объемом знаний в области математики, геометрии, астрономии, медицины. Можно ли в таком случае говорить о том, что там уже была наука? Свидетельствует ли наличие знаний о наличии науки? Общепризнано, что науки как таковой в древневосточных цивилизациях не было. Почему? 

    Во-первых, главным отличительным признаком науки является опора на теоретические модели, абстрактные объекты, которые затем проходят проверку с помощью эмпирических объектов. Знания же в древних цивилизациях опирались на непосредственную практику, нужды и потребности повседневной жизни. К примеру, возникновение геометрии в Египте связано с необходимостью измерения земли – сезонные разливы Нила меняли границы земельных участков, их формы, что требовало их восстановления. Так возникла практика измерения земельных площадей, определения площади участков с различной геометрической конфигурацией. Египтяне первыми научились вычислять площади таких геометрических фигур, как прямоугольник, треугольник, трапеция, окружность. При этом они вынуждены были отвлекаться от точных границ их ширины, не учитывать неровности, то есть создавать их отвлеченные модели.

     Таким образом, эти модели в исходной точке носили эмпирический характер, а в конечной – прикладной, кроме того, такие модели не всегда давали точные результаты. Самое же главное, существенное их свойство в том, что создавались они с опорой на известные эмпирические (наблюдаемые) образы, а не на абстрактные понятия, что и позволяет определять их как преднаучные. 

    Тем не менее, в рамках древневосточных знаний обнаруживаются отдельные случаи, когда исследование начиналось с простейших абстрактных объектов, которым находились эмпирические интерпретации. Нагляднее всего этот момент представлен в математике. К примеру, вавилоняне решали системы уравнений и извлекали корни, египтяне оперировали простейшими натуральными дробями, тем самым совершая «первые шаги по использованию общих абстрактных понятий для образования других конкретных понятий».

     

    В целом же эта стадия в истории науки определяется как переходный период от донаучного к научному познанию, или преднаука. Ее характеризуют следующие черты: 

    • Знания в этот период возникали путем индуктивного обобщения непосредственного практического опыта, не имели дедуктивного и доказательного характера и имели целью практическое применение, то есть носили рецептурный характер. Древневосточная наука не являлась самодостаточной деятельностью («наука ради науки», «познание ради познания»), она служила решению прикладных задач.

    • Древневосточная наука не была рациональной в полном смысле этого слова, что объяснялось особенностями социально-политического устройства обществ того периода. Знаниями владели жрецы, представители аристократии, власти, а потому их мнение и авторитет являлись истиной, принимались на веру. Свобода мнения, умение аргументированно, рационально доказывать общезначимые истины не сложились к этому периоду (и не могли сложиться, поскольку в обществе не было к этому предпосылок). Каста жрецов, своего рода интеллектуалов восточных деспотий, превращала знания в предмет поклонения, в таинство. Монополия жрецов на знание, отсутствие демократического духа в обществе обусловили нерациональный, догматический характер древневосточной науки, превратив ее в эзотерическое, сакральное занятие, в священнодействие.

    • Несмотря на огромные успехи древневосточной мысли (древние египтяне и вавилоняне, как упоминалось выше, умели решать уравнения первой и второй степени, определять площади треугольников и четырехугольников, знали и владели формулами объемов пирамиды, конуса, цилиндра), знания, наука в целом не имели систематического характера, древние не владели приемами доказательства. Цель знаний была одна – решать частные, практические задачи по принципу «как поступить в определенной ситуации», они не «поднимались» до общетеоретических обобщений. Кроме того, эти знания были своего рода профессиональной тайной, они не доходили до широких масс простых людей, а потому часто приобретали оттенок магического характера.


    Перечисленные особенности и позволяют древневосточные знания рассматривать лишь как переходный период от донауки к науке. В дальнейшем в математике и геометрии древних греков именно этот момент достиг своего развертывания, придав им черты науки. В естествознании же переход к научному изучению природы произошел лишь в XVII веке.

     

    2. Колыбелью подлинной науки считают античную Грецию периода наивысшего расцвета ее культуры - VI-IV вв. до н.э., а также римский период античности - III в. до н.э. - I в.н.э.

    Греки многое заимствовали у египтян и вавилонян, в частности математические знания, что и позволило им совершить переход от наглядности, эмпиричности к их рациональной, теоретической обработке. Можно сказать, что они «работали» не с реальными предметами, а их моделями (математическими, геометрическими и т.д.), выделяя в них основные понятия и недоказуемые утверждения, которые они назвали аксиомами (от греч. axioma – бесспорная, не требующая доказательств истина).

     Остальные знания они пытались доказать, используя также и логику, из чего выводились теоремы (от греч. theorema – рассматривать, обдумывать). Таким образом, в античной науке, в первую очередь геометрии, произошел скачок, переход от эмпиричного изучения и накопления знаний к их теоретическому исследованию. Для этого необходимо было прибегнуть не к чувственным формам доказательства знаний, а к логическим обобщениям. Необходимо было выделить исходные утверждения геометрии из всех других знаний о мире, сформулировать их в виде аксиом, а затем остальные утверждения выявить логически из аксиом или доказать как теоремы.

     Завершенную аксиоматическую форму геометрического знания представил знаменитый древнегреческий математик и геометр Евклид (III в. до н.э.) в его труде «Начала». Однако этому предшествовал длительный период накопления и систематизации различных доказательств.

     Считается, что у истоков греческой науки стоит фигура Фалеса (VII-VI вв. до н.э.), мудреца, философа, совершившего несколько путешествий в Египет с познавательной целью. Источники говорят о нем как о человеке, «привезшем» в Элладу геометрию. Известна теорема Фалеса о равенстве углов при основании равнобедренного треугольника, о равенстве двух треугольников, имеющих равную одну сторону и два прилегающих к ней угла. Эти геометрические утверждения были, вероятно, известны и египтянам, но они не стремились доказать их логически. Фалес же тем и вошел в историю науки, что положил начало логическим доказательствам теорем в геометрии.

     Следующей значительной фигурой в истории греческой науки (геометрии, математики) по праву считается Пифагор. Прокл, неоплатоник, схоласт (V в. н.э.), написавший многочисленные комментарии к диалогам Платона и «Началам» Евклида, пишет: «Пифагор … преобразовал эту науку в форму свободного образования. Он изучал эту науку, исходя от первых ее оснований, и старался получить теоремы при помощи чисто логического мышления, вне конкретных представлений». Пифагор создал школу своих последователей и учеников – Пифагорейский орден», в котором математика превратилась  в составную часть их религии как веры в магическое свойство чисел. Отвлекаясь от многих чрезвычайно интересных и содержательных моментов пифагореизма, остановимся на том, что составляет предмет нашего исследования – генезис науки.

     Главными достижениями здесь являются поиски строго логических доказательств в геометрии, что нашло выражение в знаменитой теореме о квадрате гипотенузы прямоугольного треугольника, равном сумме квадратов двух катетов, изучение свойств правильных многогранников, звездчатого пятиугольника и др. Пифагор внес вклад в астрономию, «объявив Землю шаром, находящимся в центре Вселенной, знал о собственном движении планет и Солнца».

     Исследуя историю становления науки, невозможно обойти вниманием элеатов – Парменида, Зенона. Их заслугой является идея, согласно которой все знания следует разделить на чувственные знания – мнения и умопостигаемые – знания по истине. Они провели демаркационную линию между миром физическим, природным, чувственным и миром идей, понятий интеллигибельным. При этом истина, сущее раскрывается только благодаря мышлению, а стало быть рацио – истинный источник истинных знаний.

     И вторая важная заслуга элеатов – разработка методов доказательств, теории доказательств. Зенон, представитель элейской школы, сформулировал принцип доказательства «от противного» и обнаружения неразрешимости противоречий. Этому он посвящает свои знаменитые апории. Приведем для примера апорию «Стрела». Исходный тезис: «движение есть ничто иное, как переход из одного состояния покоя к другому состоянию покоя». Пущенная стрела, очевидно, должна прилететь в определенный пункт, за какое-то время она проходит определенное расстояние, стало быть – движется. Но в каждый из моментов времени полета стрела занимает равное ей пространство, значит, она покоится в каждом из них. Отсюда в сумме всех моментов полетного времени стрела покоится. («Движенья нет», - сказал мудрец брадатый», - так в одном из своих стихотворений писал о Зеноне А.С. Пушкин.)

     Значительным этапом в развитии образа древнегреческой науки является атомистическая концепция Демокрита. Опираясь на логику, интуицию, Демокрит умозрительным путем пришел к идее о том, что в основаниях мира должны существовать некие неделимые частицы мироздания – атомы (от греч. atomon – неделение). Рассуждения Демокрита можно условно воспроизвести в следующем виде: все в мире изменяется, делится, но есть ли предел этому делению? Если представить, что нет, тогда рано или поздно мир исчезнет, что противоречит принципу вечного существования. Стало быть, должен существовать некий предел деления мира, некие неделимые частицы (атомы), благодаря которым мир сохраняется в многообразии его явлений и процессов. В лице Демокрита древнегреческая наука продемонстрировала такие особенности, как теоретичность, логичность и доказательность суждений, умение оперировать абстрактными, не опирающимися на эмпирические знания, моделями.

     Выше обозначенные мотивы, идеи и тенденции нашли дальнейшее продолжение в учении Платона и Аристотеля. IV в. до н.э. в Древней Греции оценивается как век Платона. Следует отметить, что во многом этому способствовал и тот факт, что еще при его жизни была открыта созданная им Академия, ставшая центром философии и науки.

     Прежде всего, представляет интерес форма текста платоновского учения – диалог. По сути дела диалог есть беседа, основанная на доказательстве истины путем обнаружения противоречий во мнениях собеседников. В такой форме проводил свои беседы учитель Платона – Сократ, назвавший этот метод диалектикой. Он был заимствован Платоном из математики. Платон считал его единственно верным методом доказательства. Гениальной идеей Платона является его учение о мире эйдосов – вечных бестелесных сущностей, слепками с которого является мир вещей. В чем значение этой идеи для науки? В самом общем виде можно сказать следующее: чтобы постичь, познать мир, человеку необходимо пойти дальше вещей, данных ему в ощущениях, постигнуть истинную реальность можно, лишь размышляя над общими началами и миром идей. Реальные факты мало занимают разум, для него важнее теории. Данный подход стал возможным благодаря всему предшествующему этапу формирования приемов и методов, сложившихся в науках (математике, геометрии). Кроме того, с Платона, можно сказать, начался процесс размежевания философии и науки – философия отныне будет иметь дело с понятиями и идеями, наука – с миром, данным в ощущениях, физическим миром.

     По сути дела, Платон завершил обозначенную элеатами оппозицию «знание – мнение», опрокинув ее на онтологическую проблематику, обосновав двойственность бытия: его неизменную, нестановящуюся основу, представляющую предмет знания, и подвижную эмпирическую видимость, выступающую предметом чувственного восприятия и мнения.

     Эта оппозиция была разрешена Аристотелем (IV в. до н.э.), учеником Платона, который, развивая теорию науки, представил знание как плод упорядоченного восприятия и опыта, в которых объединяется вся информация, поступающая от органов чувств. Он первым произвел классификацию наук, дифференцировав различные области знания и разделив все живое на виды и роды, ввел понятия пространства, времени, причинности – ключевые для науки. Оппозиционируя Платону, он указал на необходимость изучения явлений или феноменов, а не понятий.

     Но, пожалуй, величайшая заслуга Аристотеля в истории науки заключается в том, что он осуществил синтез известных, уже сложившихся до него и существующих в разрозненном виде, приемов логических доказательств, представив их канон, образец исследования, на который ориентировалось все научное знание. Сам Аристотель был разносторонним ученым, философом, математиком, физиком. Его работа «Физика» легла в основу научных представлений не только Античности, но и Средних веков, которые сохранились вплоть до Нового времени.

     К III в. до н.э. завоеванная Александром Македонским империя распалась на несколько государств, одним из которых было государство (царство) Птолемеев, расположившееся на территории Египта с центром в городе Александрия. Именно здесь и были основаны знаменитая Александрийская библиотека и Мусейон (музей), ставшие центрами науки и философии и перенявшими традиции платоновской Академии и Аристотелева Лицея. Здесь получили дальнейшее развитие научные знания в области математики, физики (механики), медицины, астрономии и космологии.

     Основателем и наиболее ярким представителем Александрийской математической школы был Евклид, а его труд «Начала» (в других переводах «Элементы», «Принципы») является первым систематическим трудом по геометрии, охватившим все геометрические знания древних. Труд Евклида стал образцом и идеалом научной строгости. Известно, что Ньютон (XVII в.), Спиноза (XVII в.) свои труды старались излагать, заимствуя у Евклида его прием строгой научной теории. В основе «Начал» Евклида положен аксиоматический метод, то есть когда из неограниченного числа теоретических положений с логической необходимостью выводятся другие.

     Из числа многих других ярких фигур той эпохи, оставивших след в науке, остановимся на легендарном Архимеде, воспитаннике Александрийской математической школы. Он был не только математиком, но и механиком, решил ряд задач по вычислению площадей поверхностей, ввел понятие центра тяжести, дал математический вывод законов рычага. Ему принадлежит знаменитое высказывание: «Дайте мне точку опоры, и я сдвину Землю». Широкую известность получил закон Архимеда, согласно которому на всякое тело, погруженное в жидкость, действует поддерживающая сила, равная весу вытесненной телом жидкости, направленная вверх и приложенная к центру тяжести вытесненного объема.

     Архимед излагал свои мысли ясным, доступным языком. Его научные труды находили применение на практике: «архимедов винт» - устройство для подъема воды на более высокий уровень, различные системы рычагов, блоков, полипластов и винтов для поднятия больших тяжестей, военные метательные машины.

     Научные труды Архимеда не получили достойной оценки при его жизни, и лишь спустя более чем полторы тысячи лет была обнаружена их ценность.

     Завершая разговор о состоянии науки в эллинистическую эпоху, необходимо отметить натурфилософское наследие Клавдия Птолемея (90-168 гг. до н.э.), одного из крупнейших ученых античности. Математика, география, астрономия – вот неполный перечень его занятий и увлечений. Одно их главных его сочинений – «Алмагест» – работа, представляющая первую математическую теорию, описывающую движение Солнца и Луны, а также других известных тогда планет. В «Альмагесте» он создал следующую картину мироздания: в центре Вселенной находится неподвижная Земля. Ближе к Земле расположена Луна, затем следуют Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн. Расположение планет в таком порядке объясняется тем, что Птолемей предположил, что чем быстрее движется планета, тем ближе к Земле она расположена.

     Данная, геоцентрическая система мира просуществовала вплоть до XVI века, до переворота, совершенного Коперником, заменившим эту  систему на гелиоцентрическую.

      
      1   2   3


    написать администратору сайта