Главная страница
Навигация по странице:

  • Уравнения переходных процессов в цепях с распределенными параметрами

  • Переходные процессы при включении на постоянное напряжениеразомкнутой и замкнутой на конце линии

  • Литература Бессонов Л.А.

  • Теоретические

  • Основы

  • Вращающееся магнитное поле


    Скачать 3.64 Mb.
    НазваниеВращающееся магнитное поле
    Дата23.02.2023
    Размер3.64 Mb.
    Формат файлаdoc
    Имя файла5_Lektsii_po_TOE_20-i_td.doc
    ТипЛекция
    #952425
    страница22 из 23
    1   ...   15   16   17   18   19   20   21   22   23

    Входное сопротивление длинной линии


    Входным сопротивлением длинной линии (цепи с распределенными параметрами) называется такое сосредоточенное сопротивление, подключение которого вместо линии к зажимам источника не изменит режим работы последнего.

    В общем случае для линии с произвольной нагрузкой  для входного сопротивления можно записать

    .  

    (1)

    Полученное выражение показывает, что входное сопротивление является функцией параметров линии  и , ее длины  и нагрузки . При этом зависимость входного сопротивления от длины линии, т.е. функция , не является монотонной, а носит колебательный характер, обусловленный влиянием обратной (отраженной) волны. С ростом длины линии как прямая, так соответственно и отраженная волны затухают все сильнее. В результате влияние последней ослабевает и амплитуда колебаний функции  уменьшается. При согласованной нагрузке, т.е. при , как было показано ранее, обратная волна отсутствует, что полностью соответствует выражению (1), которое при  трансформируется в соотношение

    .

    Такой же величиной определяется входное сопротивление при .

    При некоторых значениях длины линии ее входное сопротивление может оказаться чисто активным. Длину линии, при которой  вещественно, называют резонансной. Как и в цепи с сосредоточенными параметрами, резонанс наиболее ярко наблюдается при отсутствии потерь. Для линии без потерь на основании (1) можно записать

    .      

    (2)

    Из (2) для режимов холостого хода (ХХ) и короткого замыкания (КЗ), т.е. случаев, когда потребляемая нагрузкой активная мощность равна нулю, соответственно получаем:

    ;

    (3)




    .

    (4)

    Исследование характера изменения  в зависимости от длины  линии на основании (3) показывает, что при    по модулю изменяется в пределах  и имеет емкостный характер, а при  - в пределах  и имеет индуктивный характер. Такое чередование продолжается и далее через отрезки длины линии, равные четверти длины волны (см. рис. 1,а).

    В соответствии с (4) аналогичный характер, но со сдвигом на четверть волны, будет иметь зависимость  при КЗ (см. рис. 1,б).

     

    Точки, где , соответствуют резонансу напряжений, а точки, где , - резонансу токов.

    Таким образом, изменяя длину линии без потерь, можно имитировать емкостное и индуктивное сопротивления любой величины. Поскольку длина волны  есть функция частоты, то аналогичное изменение  можно обеспечить не изменением длины линии, а частоты генератора. При некоторых частотах входное сопротивление цепи с распределенными параметрами также становится вещественным. Такие частоты называются резонансными. Таким образом, резонансными называются частоты, при которых в линии укладывается целое число четвертей волны.

     

    Переходные процессы в цепях с распределенными параметрами

    Переходные процессы в цепях с распределенными параметрами имеют характер блуждающих волн, распространяющихся по цепи в различных направлениях. Эти волны могут претерпевать многократные отражения от стыков различных линий, от узловых точек включения нагрузки и т.д. В результате наложения этих волн картина процессов в цепи может оказаться достаточно сложной. При этом могут возникнуть сверхтоки и перенапряжения, опасные для оборудования.

    Переходные процессы в цепях с распределенными параметрами возникают при различных изменениях режимов их работы: включении-отключении нагрузки, источников энергии, подключении новых участков линии и т.д. Причиной переходных процессов в длинных линиях могут служить грозовые разряды.

     

    Уравнения переходных процессов в цепях с распределенными параметрами

    При рассмотрении схемы замещения цепи с распределенными параметрами были получены дифференциальные уравнения в частных производных



    (5)






    (6)

    Их интегрирование с учетом потерь представляет собой достаточно сложную задачу. В этой связи будем считать цепь линией без потерь, т.е. положим  и . Такое допущение возможно для линий с малыми потерями, а также при анализе начальных стадий переходных процессов, часто наиболее значимых в отношении перенапряжений и сверхтоков.

    С учетом указанного от соотношений (5) и (6) переходим к уравнениям

      

    (7)




     

    (8)

    Для получения уравнения (7) относительно одной переменной продифференцируем (7) по х, а (8) – по t:



    (9)




    .

    (10)

    Учитывая, что для линии без потерь , после подстановки соотношения (10) в (9) получим



    (11)

    Аналогично получается уравнение для тока



    (12)

    Волновым уравнениям (11) и (12) удовлетворяют решения

    ;

    .

    Как и ранее, прямые и обратные волны напряжения и тока связаны между собой законом Ома для волн

      и  ,

    где .

    При расчете переходных процессов следует помнить:

    1. В любой момент времени напряжение и ток в любой точке линии рассматриваются как результат наложения прямой и обратной волн этих переменных на соответствующие величины предшествующего режима.

    2. Всякое изменение режима работы цепи с распределенными параметрами обусловливает появление новых волн, накладываемых на существующий режим.

    3. Для каждой волны в отдельности выполняется закон Ома для волн.

    Как указывалось, переходный процесс в цепях с распределенными параметрами характеризуется наложением многократно отраженных волн. Рассмотрим многократные отражения для двух наиболее характерных случаев: подключение источника постоянного напряжения к разомкнутой и короткозамкнутой линии.

     

    Переходные процессы при включении на постоянное напряжение
    разомкнутой и замкнутой на конце линии


    При замыкании рубильника (см. рис. 2) напряжение в начале линии сразу же достигает величины , и в озникают прямые волны прямоугольной формы напряжения  и тока , перемещающиеся вдоль линии со скоростью V (см. рис. 3,а).Во всех точках линии, до которых волна еще не дошла, напряжение и ток равны нулю.Точка, ограничивающая участок линии, до которого дошла волна, называется фронтом волны. В рассматриваемом случае во всех точках линии, пройденных фронтом волны, напряжение равно , а ток - .

    Отметим, что в реальных условиях форма волны, зависящая от внутреннего сопротивления источника, параметров линии и т.п., всегда в большей или меньшей степени отличается от  прямоугольной.

    Кроме того, при подключении к линии источника с другим законом изменения напряжения форма волны будет иной. Например, при экспоненциальном характере изменения напряжения источника (рис. 4,а) волна будет иметь форму на рис. 4,б.

    В рассматриваемом примере с прямоугольной волной напряжения при первом пробеге волны напряжения и тока (см. рис. 3,а) независимо от нагрузки имеют значения соответственно  и , что связано с тем, что волны еще не дошли до конца линии, и, следовательно, условия в конце линии не могут влиять на процесс.

    В момент времени  волны напряжения и тока доходят до конца линии длиной l, и нарушение однородности обусловливает появление обратных (отраженных) волн. Поскольку в конце линия разомкнута, то

    ,

    откуда  и .

    В результате (см. рис. 3,б) напряжение в линии, куда дошел фронт волны, удваивается, а ток спадает до нуля.

    В момент времени , обратная волна напряжения, обусловливающая в линии напряжение , приходит к источнику, поддерживающему напряжение . В результате возникает волна напряжения  и соответствующая волне тока  (см. рис. 3,в).

    В момент времени  волны напряжения и тока подойдут к концу линии. В связи с ХХ  и  (см. рис. 3,г). Когда эти волны достигнут начала линии, напряжение и ток в ней окажутся равными нулю. Следовательно, с этого момента переходный процесс будет повторяться с периодичностью .

    В случае короткозамкнутой на конце линии в интервале времени  картина процесса соответствует рассмотренной выше. При , поскольку в конце линии  и , что приведет к возрастанию тока в линии за фронтом волны до величины . При  от источника к концу линии будет двигаться волна напряжения  и соответствующая ей волна тока , обусловливающая ток в линии, равный , и т. д. Таким образом, при каждом пробеге волны ток в линии возрастает на .

    Отметим, что в реальном случае, т.е. при наличии потерь мощности, напряжение в линии в режиме ХХ постепенно выйдет на уровень, определяемый  напряжением источника, а ток в режиме КЗ ограничится активным сопротивлением и проводимостью линии, а также внутренним сопротивлением источника.

     

    Литература

    1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

    2. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.

    3. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

    Контрольные вопросы и задачи

    1. Какой характер имеет зависимость входного сопротивления линии от ее длины и почему?

    2. С помощью чего можно изменять характер и величину входного сопротивления цепи с распределенными параметрами?

    3. Какое допущение лежит в основе анализа переходных процессов в длинных линиях?

    4. Каким законом связаны волны напряжения и тока в переходных режимах?

    5. Линия без потерь имеет длину , фазовая скорость волны . При каких частотах в ней будут иметь место минимумы и максимумы входного сопротивления?

    Ответ: .

    1. При каких длинах линии без потерь в ней будут наблюдаться резонансные явления, если фазовая скорость равна скорости света, а частота ?

    Ответ: .

    1. Постройте эпюры распределения напряжения и тока вдоль линии, питаемой от источника постоянного напряжения, при включении и отключении в ее конце резистивной нагрузки.

    Лекция N 43
    1   ...   15   16   17   18   19   20   21   22   23


    написать администратору сайта