Вращающееся магнитное поле
Скачать 3.64 Mb.
|
Линейные электрические цепи при несинусоидальных |
. | (1) |
Здесь - постоянная составляющая или нулевая гармоника; - первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.
В выражении (1) , где коэффициенты и определяются по формулам
;
.
Свойства периодических кривых, обладающих симметрией
Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.
К ривые, симметричные относительно оси абсцисс.
К данному типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е. .
К ривые, симметричные относительно оси ординат.
К данному типу относятся кривые, для которых выполняется равенство (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е. .
К ривые, симметричные относительно начала координат.
К этому типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е. .
Действующее значение периодической несинусоидальной переменной
Как было показано выше, действующим называется среднеквадратичное за период значение величины:
.
При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о действующих значениях конечного ряда гармонических.
Пусть . Тогда
Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,
или
.
Аналогичные выражения имеют место для ЭДС, напряжения и т.д.
Мощность в цепях периодического несинусоидального тока
Пусть и .
Тогда для активной мощности можно записать
.
Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,
,
где .
Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:
.
Аналогично для реактивной мощности можно записать
.
Полная мощность
,
где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.
Методика расчета линейных цепей при периодических
несинусоидальных токах
В озможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС
(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.
Здесь .
Тогда, например, для тока в ветви с источником ЭДС, имеем
,
где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры и С постоянны.
;
.
Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.
Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:
ЭДС и токи источников раскладываются в ряды Фурье.
Осуществляется расчет цепи в отдельности для каждой гармонической.
Искомые величины определяются как алгебраические суммы соответствующих гармонических.
Литература
Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.
Контрольные вопросы
Что является причиной появления несинусоидальных токов и напряжений в электрических цепях?
Какие величины и коэффициенты характеризуют периодические несинусоидальные переменные?
Какие гармонические отсутствуют в спектрах кривых, симметричных относительно: 1) оси абсцисс; 2) оси ординат; 3) начала системы координат?
Достаточно ли для определения величины полной мощности в цепи несинусоидального тока наличие информации об активной и реактивной мощностях?
Для каких цепей справедлива методика расчета цепей несинусоидального тока, основанная на разложении ЭДС и токов источников в ряды Фурье?
Не прибегая к разложению в ряд Фурье, определить коэффициенты амплитуды и формы кривой на рис. 4.
Ответ: .
Определить действующее значение напряжения на зажимах ветви с последовательным соединением резистора с и катушки индуктивности с , если ток в ней . Рассчитать активную мощность в ветви.
Ответ: U=218 В; Р=1260 Вт.
Определить действующее значение тока в ветви с источником ЭДС в схеме на рис. 5, если ; .
Ответ: I=5,5 A.
Лекция N 23