Вращающееся магнитное поле
Скачать 3.64 Mb.
|
Резонансные явления в цепях несинусоидального токаВ цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для к-й гармоники вещественно. Пусть имеет место цепь на рис. 1,а, питающаяся от источника несинусоидальной ЭДС, в которой емкость конденсатора может плавно изменяться от нуля до бесконечности. Для к-й гармоники тока можно записать , где - действующее значение к-й гармоники ЭДС. Таким образом, при изменении С величина к-й гармоники тока будет изменяться от нуля при С=0 до при , достигая максимума при резонансе (см. рис. 1,б), определяемом величиной емкости . Следует отметить, что, несмотря на то, что обычно с ростом порядка гармонической ЭДС ее амплитуда уменьшается, в режиме резонанса для к-й гармонической ее значение может превышать величину первой гармоники тока. Резонансные явления используются для выделения гармоник одних частот и подавления других. Пусть, например, в цепи на рис. 2 необходимо усилить q-ю гармонику тока на нагрузке и подавить р-ю. Д ля подавления р-й гармоники в режим резонанса токов настраивается контур : . Для выделения q-й гармоники вся цепь для нее настраивается в режим резонанса напряжений: , откуда при известных и . Отметим, что рассмотренные явления лежат в основе работы L-C -фильтров. Особенности протекания несинусоидальных токов через пассивные элементы цепи 1 . Резистор. При ток через резистор (см. рис. 3) , где . Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте. 2. Конденсатор. П усть напряжение на конденсаторе (рис. 4) описывается гармоническим рядом . Коэффициент искажения кривой напряжения
Ток через конденсатор . Тогда соответствующий кривой тока коэффициент искажения
Сравнение (1) и (2) показывает, что , т.е. конденсатор искажает форму кривой тока по сравнению с напряжением, являясь сглаживающим элементом для последнего. Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока. 3. Катушка индуктивности. П ринимая во внимание соотношение между напряжением и током для катушки индуктивности (рис. 6) совершенно аналогично можно показать, что в случае индуктивного элемента , т.е. кривая напряжения искажена больше, чем кривая тока. Этому случаю будет соответствовать рис. 5 при взаимной замене на нем кривых напряжения и тока. Таким образом, катушка индуктивности является сглаживающим элементом для тока. С учетом вышесказанного на практике, например в силовой полупроводниковой технике, для сглаживания выпрямленного напряжения применяют конденсаторные фильтры, а для тока – дроссели. Высшие гармоники в трехфазных цепях Напряжения трехфазных источников энергии часто бывают существенно несинусоидальными (строго говоря, они несинусоидальны всегда). При этом напряжения на фазах В и С повторяют несинусоидальную кривую напряжения на фазе А со сдвигом на треть периода Т основной гармоники: . Пусть для фазы А к-я гармоника напряжения . Тогда с учетом, что , для к-х гармонических напряжений фаз В и С соответственно можно записать: Всю совокупность гармоник к от 0 до можно распределить по трем группам: 1. - гармоники данной группы образуют симметричные системы напряжений, последовательность которых соответствует последовательности фаз первой гармоники, т.е. они образуют симметричные системы напряжений прямой последовательности. Действительно, и . 2. . Для этих гармоник имеют место соотношения: т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности. 3. . Для этих гармоник справедливо Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности. Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем. 1 . Если фазы генератора соединены в треугольник, то при несинусоидальных фазных ЭДС сумма ЭДС, действующих в контуре (см. рис. 7) не равна нулю, а определяется гармониками, кратными трем. Эти гармоники вызывают в замкнутом треугольнике генератора ток, даже когда его внешняя цепь разомкнута: , где , а - сопротивление фазы генератора для i-й гармоники, кратной трем. 2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем: . Таким образом, показание вольтметра в цепи на рис. 8 . 3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем. При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных. При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора. Таким образом, при соединении в треугольник напряжение генератора и ток . В свою очередь при соединении в звезду . 4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность: . 5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками . Литература Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с. Контрольные вопросы Какой характер: монотонный или колебательный – будет иметь зависимость действующего значения тока от величины индуктивности в цепи на рис. 1 при ее изменении от нуля до бесконечности? Почему на практике сигнал, пропорциональный току, получают с использованием резистивных шунтов? Какие гармоники и почему определяют характерные особенности режимов работы трехфазных цепей? Какие гармоники отсутствуют в линейных напряжениях и токах? Почему при несинусоидальных источниках питания, соединенных в треугольник, действующее значение фазной ЭДС может быть больше действующего значения фазного напряжения? При соединении трехфазного генератора и симметричной нагрузки по схеме «звезда-звезда» без нейтрального провода фазная ЭДС источника определяется выражением Определить действующие значения линейного напряжения, фазных напряжений генератора и приемника, а также напряжение смещения нейтрали. Ответ: . В предыдущей задаче нейтральные точки генератора и приемника соединены проводом с нулевым сопротивлением. Определить ток в нейтральном проводе, если сопротивление фазы нагрузки R=10 Ом. Ответ: . При соединении трехфазного генератора и симметричной нагрузки по схеме «треугольник-треугольник» фазная ЭДС источника содержит первую и третью гармоники с амплитудами . Сопротивление нагрузки для первой гармоники Определить действующее значение линейного тока. Ответ: . Лекция N 24 |