Вращающееся магнитное поле
Скачать 3.64 Mb.
|
Некоторые важные замечания к формуле разложенияПри наличии в цепи синусоидальной ЭДС для перехода от комплекса к функции времени от правой части формулы разложения берется мнимая часть, т.е. выражение при j. Если при этом в цепи также имеют место другие источники, например, постоянной Е и экспоненциальной ЭДС, и начальные условия для токов в ветвях с индуктивными элементами и напряжений на конденсаторах ненулевые, то они должны быть все введены в формулу предварительно умноженными на j, поскольку только в этом случае они будут учтены при взятии мнимой части от формулы разложения, т.е. . Принужденной составляющей от действия источника синусоидальной ЭДС в формуле разложения соответствует слагаемое, определяемое корнем . Для сложных схем такое ее вычисление может оказаться достаточно трудоемким, в связи с чем принужденную составляющую в этих случаях целесообразно определять отдельно символическим методом, а свободную – операторным. Комплексно-сопряженным корням уравнения в формуле разложения соответствуют комплексно-сопряженные слагаемые, которые в сумме дают удвоенный вещественный член, т.е. для к-й пары комплексно-сопряженных корней имеет место . Последовательность расчета переходных процессов операторным методом 1. Определение независимых начальных условий путем расчета докоммутационного режима работы цепи. 2. Составление операторной схемы замещения цепи (для простых цепей с нулевыми начальными условиями этот этап может быть опущен). 3. Запись уравнений по законам Кирхгофа или другим методам расчета линейных цепей в операторной форме с учетом начальных условий. 4. Решение полученных уравнений относительно изображений искомых величин. 5. О пределение оригиналов (с помощью формулы разложения или таблиц соответствия оригиналов и изображений) по найденным изображениям. В качестве примера использования операторного метода определим ток через катушку индуктивности в цепи на рис. 1. С учетом нулевого начального условия операторное изображение этого тока . Для нахождения оригинала воспользуемся формулой разложения при нулевом корне
где , . Корень уравнения . Тогда и . Подставляя найденные значения слагаемых формулы разложения в (1), получим . Воспользовавшись предельными соотношениями, определим и : Формулы включения Формулу разложения можно использовать для расчета переходных процессов при нулевых и ненулевых начальных условиях. Если начальные условия нулевые, то при подключении цепи к источнику постоянного, экспоненциального или синусоидального напряжения для расчета переходных процессов удобно использовать формулы включения, вытекающие из формулы разложения. Формула включения на экспоненциальное напряжение
где - входное операторное сопротивление двухполюсника при определении тока в ветви с ключом (при расчете тока в произвольной ветви это операторное сопротивление, определяющее ток в ней по закону Ома); - к-й корень уравнения . Формула включения на постоянное напряжение (вытекает из (2) при ) . Формула включения на синусоидальное напряжение (формально вытекает из (2) при и ) . В качестве примера использования формулы включения рассчитаем ток в цепи на рис. 2, если в момент времени t=0 она подсоединяется к источнику с напряжением ; ; . В соответствии с заданной формой напряжения источника для решения следует воспользоваться формулой (2). В ней . Тогда корень уравнения . Производная и . В результате . Сведение расчета переходного процесса к расчету с нулевыми начальными условиями Используя принцип наложения, расчет цепи с ненулевыми начальными условиями можно свести к расчету схемы с нулевыми начальными условиями. Последнюю цепь, содержащую пассивные элементы, можно затем с помощью преобразований последовательно-параллельных соединений и треугольника в звезду и наоборот свести к виду, позволяющему определить искомый ток по закону Ома с использованием формул включения. Методику сведения цепи к нулевым начальным условиям иллюстрирует рис. 3, на котором исходная схема на рис. 3,а заменяется эквивалентной ей схемой на рис. 3,б, где . Последняя в соответствии с принципом наложения раскладывается на две схемы; при этом в схеме на рис. 3,в составляющая общего тока равна нулю. Таким образом, полный ток равен составляющей тока в цепи на рис. 3,г, где исходный активный двухполюсник АД заменен пассивным ПД, т.е. схема сведена к нулевым начальным условиям. Следует отметить, что если определяется ток в ветви с ключом, то достаточно рассчитать схему на рис. 3,г. При расчете тока в какой-либо другой ветви АД в соответствии с вышесказанным он будет складываться из тока в этой ветви до коммутации и тока в ней, определяемого подключением ЭДС к пассивному двухполюснику. Аналогично можно показать, что отключение ветви, не содержащей индуктивных элементов, при расчете можно имитировать включением в нее источника тока, величина которого равна току в ветви до коммутации, и действующему навстречу ему. Переходная проводимость При рассмотрении метода наложения было показано, что ток в любой ветви схемы может быть представлен в виде , где - собственная (к=m) или взаимная проводимость. Это соотношение, трансформированное в уравнение
будет иметь силу и в переходном режиме, т.е. когда замыкание ключа в m-й ветви подключает к цепи находящийся в этой ветви источник постоянного напряжения . При этом является функцией времени и называется переходной проводимостью. В соответствии с (3) переходная проводимость численно равна току в ветви при подключении цепи к постоянному напряжению . Переходная функция по напряжению Переходная функция по напряжению наиболее часто используется при анализе четырехполюсников. Если линейную электрическую цепь с нулевыми начальными условиями подключить к источнику постоянного напряжения , то между произвольными точками m и n цепи возникнет напряжение , где - переходная функция по напряжению, численно равная напряжению между точками m и n схемы при подаче на ее вход постоянного напряжения . Переходную проводимость и переходную функцию по напряжению можно найти расчетным или экспериментальным (осциллографирование) путями. В качестве примера определим эти функции для цепи на рис. 4. В этой схеме , где . Тогда переходная проводимость . Переходная функция по напряжению . Литература Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с. Контрольные вопросы Как в формуле разложения учитываются при наличии источника синусоидальной ЭДС источники других типов, а также ненулевые начальные условия? Как целесообразно проводить расчет переходных процессов операторным методом в сложных цепях при синусоидальном питании? Проведите сравнительный анализ классического и операторного методов. Какие этапы включает в себя операторный метод расчета переходных процессов? Из формулы включения на какое напряжение вытекают другие варианты ее записи? Запишите формулы включения. В каких случаях применяются формулы включения? Чему численно соответствуют переходная проводимость и переходная функция по напряжению? На основании решения задачи 7 в задании к лекции № 27 с использованием формулы разложения определить ток в ветви с индуктивным элементом, если параметры цепи: . Ответ: . С использованием формулы включения найти ток в неразветвленной части цепи на рис. 5,
Лекция N 29 |