Вращающееся магнитное поле
Скачать 3.64 Mb.
|
Линия без искаженийПусть сигнал, который требуется передать без искажений по линии, является периодическим, т.е. его можно разложить в ряд Фурье. Сигнал будет искажаться, если для составляющих его гармонических затухание и фазовая скорость различны, т.е. если последние являются функциями частоты. Таким образом, для отсутствия искажений, что очень важно, например, в линиях передачи информации, необходимо, чтобы все гармоники распространялись с одинаковой скоростью и одинаковым затуханием, поскольку только в этом случае, сложившись, они образуют в конце линии сигнал, подобный входному. Идеальным в этом случае является так называемая линия без потерь, у которой сопротивление и проводимость равны нулю. Действительно, в этом случае , т.е. независимо от частоты коэффициент затухания и фазовая скорость . Однако искажения могут отсутствовать и в линии с потерями. Условие передачи сигналов без искажения вытекает из совместного рассмотрения выражений для постоянной распространения
и фазовой скорости
Из (1) и (2) вытекает, что для получения и , что обеспечивает отсутствие искажений, необходимо, чтобы , т.е. чтобы волновое сопротивление не зависело от частоты.
Как показывает анализ (3), при
есть вещественная константа. Линия, параметры которой удовлетворяют условию (4), называется линией без искажений. Фазовая скорость для такой линии и затухание . Следует отметить, что у реальных линий (и воздушных, и кабельных) . Поэтому для придания реальным линиям свойств линий без искажения искусственно увеличивают их индуктивность путем включения через одинаковые интервалы специальных катушек индуктивности, а в случае кабельных линий – также за счет обвивания их жил ферромагнитной лентой. Уравнения линии конечной длины Постоянные и в полученных в предыдущей лекции формулах
определяются на основании граничных условий. П усть для линии длиной l (см. рис. 1) заданы напряжение и ток в начале линии, т.е. при . Тогда из (5) и (6) получаем откуда Подставив найденные выражения и в (5) и (6), получим
Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение и ток в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде
Обозначив и , из уравнений (9) и (10) при получим откуда После подстановки найденных выражений и в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии
Уравнения длинной линии как четырехполюсника В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями ; . Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условие выполняется. Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения. Определение параметров длинной линии из опытов холостого хода и короткого замыкания Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ). При ХХ и , откуда входное сопротивление
При КЗ и . Следовательно,
На основании (13) и (14)
и , откуда
Выражения (15) и (16) на основании данных эксперимента позволяют определить вторичные параметры и линии, по которым затем могут быть рассчитаны ее первичные параметры и . Линия без потерь Линией без потерь называется линия, у которой первичные параметры и равны нулю. В этом случае, как было показано ранее, и . Таким образом, , откуда . Раскроем гиперболические функции от комплексного аргумента : Тогда для линии без потерь, т.е. при , имеют место соотношения: и . Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:
Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18). Стоячие волны в длинных линиях Как было показано выше, решение уравнений длинной линии можно представить в виде суммы прямой и обратной волн. В результате их наложения в цепях с распределенными параметрами возникают стоячие волны. Рассмотрим два предельных случая: ХХ и КЗ в линии без потерь, когда поглощаемая приемником активная мощность равна нулю. При ХХ на основании уравнений (17) и (18) имеем и , откуда для мгновенных значений напряжения и тока можно записать
Последние уравнения представляют собой уравнения стоячих волн, являющихся результатом наложения прямой и обратной волн с одинаковыми амплитудами. П ри ХХ в соответствии с (19) и (20) в точках с координатами , где - целое число, имеют место максимумы напряжения, называемые пучностями, и нули тока, называемые узлами. В точках с координатами пучности и узлы напряжения и тока меняются местами (см. рис. 2). Таким образом, узлы и пучности неподвижны, и пучности одной переменной совпадают с узлами другой и наоборот. При КЗ на основании уравнений (17) и (18) и , откуда для мгновенных значений можно записать т.е. и в этом случае напряжение и ток представляют собой стоячие волны, причем по сравнению с режимом ХХ пучности и узлы напряжения и тока соответственно меняются местами. Поскольку в узлах мощность тождественно равна нулю, стоячие волны в передаче энергии вдоль линии не участвуют. Ее передают только бегущие волны. Чем сильнее нагрузка отличается от согласованной, тем сильнее выражены обратные и, следовательно, стоячие волны. В рассмотренных предельных случаях ХХ и КЗ имеют место только стоячие волны, и мощность на нагрузке равна нулю. Литература Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. Контрольные вопросы и задачи Что называется линией без искажений? Как соотносятся первичные параметры в такой линии? Запишите уравнения линии конечной длины для случаев, когда заданы ее входные напряжение и ток и когда выходные. Как определяются параметры цепи с распределенными параметрами? Что называется линией без потерь? Какими свойствами она обладает? При каких условиях в линии образуются стоячие волны? Определить напряжение и ток на входе трехфазной линии электропередачи длиной , если , , . Параметры линии на фазу: , , , . Определить КПД линии. Ответ: ; ; . Определить входное сопротивление линии без потерь длиной в четверть волны, нагруженной на емкостную нагрузку при частоте 100 МГц. Волновое сопротивление . Ответ: . Однородная двухпроводная линия без искажений имеет волновое сопротивление , скорость распространения волны и затухание 1,5 Неп на 100 км. Определить первичные параметры линии, и также ее КПД при длине и нагрузке, равной волновой. Ответ: ; ; ; ; . Линия без потерь нагружена на емкостное сопротивление, численно равное волновому. , . В конце линии . Найти на расстоянии 1м от конца линии. Ответ: . Линия без потерь длиной разомкнута на конце. , в начале линии . Найти в середине линии. Ответ: . Лекция N 42 |