методичка. Введение. 2 Методы контроля за разработкой нефтяных и газовых месторождений
Скачать 0.63 Mb.
|
2. Задачи, решаемые геофизическими методами при контроле за разработкой нефтяных месторождений. В процессе разработки нефтяной залежи необходимо осуществлять комплексные гидродинамические, геофизические и лабораторные исследования для изучения характера изменения нефтенасыщенности пластов и на основании полученных данных принимать меры для наиболее полного извлечения нефти. В настоящее время промыслово-геофизическимим методами решаются следующие основные задачи: исследование процесса вытеснения нефти в пласте; изучение эксплуатационных характеристик пласта; изучение технического состояния скважин; исследование скважин для выбора оптимального режима работы скважины и ее технологического оборудования. Изучению процесса вытеснения нефти в пласте должно предшествовать исследование эксплуатационных характеристик пласта, а последняя задача не может быть надежно решена без данных о техническом состоянии скважины. В связи с этим комплекс промыслово-геофизических работ в скважинах эксплуатационного фонда и их программа должны предусматривать решение всех трех задач в одном цикле исследований. Однако задачи изучения эксплуатационных характеристик пласта и технического состояния скважин во многих случаях могут быть поставлены самостоятельно, вне прямой связи с вопросами изучения процесса вытеснения нефти из пласта. 2.1 Исследование процесса вытеснения нефти в пласте Исследование процесса вытеснения нефти в пласте включает: контроль за перемещением водонефтяного контакта (ВНК) и контуров нефтеносности; контроль за продвижением фронта закачиваемых вод (ФЗВ); определение текущей и остаточной нефтенасыщенности; контроль за перемещением газонефтяного контакта и определение газонасыщенности пласта. Контроль за перемещением водонефтяного контакта и контуров нефтеносности Контроль за перемещением ВНК и контуров нефтеносности осуществляется по комплекту следующих данных: по кривым электрического каротажа (БКЗ, БК, ИК, диэлектрический каротаж), полученным в контрольных необсаженных скважинах и дополнительных скважинах, пробуренных из числа резервных в процессе эксплуатации месторождения; по результатам периодических исследований неперфорированных пластов в эксплуатационных и контрольных обсаженных скважинах; по материалам промысловых исследований и гидродинамических расчетов: по характеру обводнения соседних эксплуатационных скважин, по сопоставлению их профилей притока во времени, по аналитическим расчетам, произведенным на основе карт-изобар. Определение текущего положения ВНК в открытом стволе (или скважинах, обсаженных неметаллической колонной) методами электрического каротажа проводится так же, как и определение первоначального ВНК. Методика интерпретации данных электрического каротажа принципиально не отличается от обычной, изложенной в соответствующих инструкциях и руководствах. Основными методами контроля за положением ВНК в обсаженных скважинах являются методы нейтронного каротажа. Возможности нейтронного каротажа по разделению нефтеносной и обводненной частей пласта определяются объемным содержанием хлора в обводненной части пласта (т. е. минерализацией воды и пористостью пласта), а также минерализацией связанной воды в нефтеносной части пласта. Наиболее благоприятными для применения нейтронного каротажа являются условия, при которых минерализация воды, вытесняющей нефть, и пористость пласта высокие, а минерализация связанной и обводняющей пласт воды одинаковы. В условиях низкой минерализации пластовых вод, т. е. при эквивалентном содержании NaCl 0,3-2% объема породы (содержание NaCl в воде 15-100 г/л при kп=20%), контроль за положением ВНК возможен по результатам высокоточных определений декремента затухания плотности нейтроновпо ИННК. В таких условиях минимальное различие в величинах для полностью нефтеносного и водоносного пластов при их неизменных свойствах по пористости и литологии составляет 8-10%. Точность определения величин декремента затухания с современной аппаратурой 2%. Влияние вариаций свойств пластов (их литологии, в первую очередь глинистости и пористости) на величину декремента затуханияпревышает влияние изменения характера насыщения пласта. Поэтому для оценки характера насыщения пласта по однократным исследования ИННК необходимо располагать методикой определения глинистости и пористости (например, по данным гамма- и нейтронного каротажа) для типичных продуктивных коллекторов исследуемой залежи. П ример Определение положения ВНК в случае, когда пласт достаточно однороден по пористости и литологии и пластовые воды имеют высокую минерализацию, возможно методами ИННК, НГК и ННК-Т. Положение водонефтяного контакта надежно определяется по всем диаграммам на основании качественной интерпретации: на диаграммах НГК — по началу уменьшения показания, на диаграммах ННК-Т и ИННК на любой задержке — по началу увеличения показаний. Контроль за продвижением фронта закачиваемых вод При внутриконтурном заводнении необходимо осуществлять контроль за продвижением фронта закачиваемых вод. Для решения этой задачи применяются тот же комплекс методов и методика исследований, что и при контроле за продвижением ВНК. Методика интерпретации результатов исследований должна учитывать основные закономерности продвижения закачиваемых вод: а) в однородном пласте с хорошей вертикальной проницаемостью наблюдается опережающее обводнение в подошвенной части и отставание в кровельной за счет проявления гравитационных сил; б) в неоднородном по проницаемости пласте опережающее обводнение наблюдается по наиболее проницаемым прослоям; в) по мере продвижения закачиваемых вод по нефтяному пласту происходит увеличение их минерализации за счет экстракции солей из нефти, в результате чего на фронте вытеснения образуется вал минерализованных вод, в которых содержание солей в ряде случаев выше, чем в реликтовых водах. Из первых двух закономерностей вытекает, что в подошвенной части пласта, сложенной коллекторами с лучшими фильтрационными свойствами, нужно ожидать значительного опережающего продвижения фронта закачиваемых вод по сравнению с остальной частью пласта. Напротив, в кровельной части пласта, сложенной коллекторами с пониженной проницаемостью, после прохождения фронта закачиваемых вод и длительной промывки пласта может остаться нефть. Отсюда следует, что для повышения надежности интерпретации необходимо предварительно классифицировать по роды-коллекторы по фильтрационным свойствам и учитывать положение исследуемого пропластка относительно границ пласта. Из третьей закономерности вытекает, что вытеснение нефти закачиваемой водой сопровождается сложным процессом изменения хлоросодержания пласта. Этот процесс может быть разбит на следующие этапы; начальный этап, когда нефть в пласте еще неподвижна и остаточная вода опреснена в прискважинной зоне фильтратом промывочной жидкости (в случае вскрытия пласта на пресной промывочной жидкости; этап однофазного движения нефти содержание хлора в прискважинной части пласта увеличивается за счет солевого обмена между движущейся нефтью и неподвижной остаточной водой; этап уменьшения нефтенасыщенности за счет опережающей капиллярной пропитки содержание хлора в пласте достигает максимума и может превзойти его содержание в водоносной части пласта; начальный этап обводнения содержание хлора начинает уменьшаться до уровня минерализации остаточной воды; этап обводнения закачиваемой водой в зависимости от соотношения минерализации закачиваемой и остаточной воды содержание хлора в пласте или постепенно стабилизируется, если их минерализации близки или будет уменьшаться при меньшей минерализации закачиваемых вод; конечный этап содержание нефти в пласте достигает предельной величины остаточной нефтеиасыщенности, а минерализация воды в пласте, включая связанную воду, становится равной минерализации закачиваемой. Кривая изменения декремента затухания плотности нейтронов в процессе выработки нефтяного пласта повторяет по форме кривую изменения содержания хлора в пласте и поэтому служит характеристикой, по которой можно судить об этапах процесса вытеснения нефти водой. П ример Количественная оценка коэффициента текущей и остаточной нефтенасыщенности Количественная оценка текущей и остаточной нефтенасыщенности разрабатываемого пласта возможна при условии известной и достаточно высокой минерализации вод, обводняющих пласт. В открытом стволе указанная задача решается методами электрического каротажа, методика интерпретации результатов которых не отличается от методики оценки первоначального коэффициента нефтенасыщенности. В обсаженной скважине в настоящее время единственным методом оценки текущей и остаточной нефтенасыщенности является методика ИННК. Оценка нефтенасыщенности по данным ИННК базируется на связи среднего времени жизни тепловых нейтронов с коллекторскими свойствами и нефтенасыщенностью исследуемых пород. На характер зависимости существенное влияние оказывают минерализация пластовой воды, состав минерального скелета, глинистость, химический состав нефти. Влияние этих факторов должно быть учтено или исключено. Методика количественной оценки текущей и остаточной нефтенасыщенности применима для песчано-глинистых коллекторов с гранулярной пористостью при разработке залежи в условиях естественного водонапорного режима или с поддержанием пластового давления за счет законтурной или внутриконтурной закачки пресных вод в начальной стадии обводнения, когда минерализация воды, вытесняющей нефть, близка к минерализации пластовой воды. Эффективное использование методики возможно при минерализации пластовой воды не менее 150 г/л NaCl и пористости пласта более 15%. Методика количественной оценки нефтенасыщенности может быть использована для качественной интерпретации (выделения нефтенасыщенных и обводняющихся пластов, а также степени их выработки) в условиях пониженной минерализации пластовых вод (30—100 г/л) и изменения пористости и глинистости в широких пределах (0,1 Оценка начальной нефтенасыщенности производится только в скважинах, пробуренных на растворах с нефтяной основой. При вскрытии пласта на водных растворах в связи с возможным стойким опреснением связанной воды в продуктивных пластах оценка начальной нефтенасыщенности по данной методике будет завышенной и может использоваться в качестве фоновой или опорной величины, значение которой принимается близкой к 100% (фиктивная нефтенасыщенность). Методика количественной оценки нефтенасыщенности применима в условиях остановленных скважин при исследовании неперфорированных пластов или перфорированных, когда поступление жидкости из скважины в пласт не наблюдается. В условиях работающей скважины определение нефтенасыщенности возможно, если отсутствуют перетоки флюидов между пластами. Количественная оценка нефтенасыщенности основана на использовании опорных пластов с известными максимальными и минимальными значениями нефтенасыщения, что позволяет избавиться от существенных систематических погрешностей, связанных с различием между истинной и измеряемой величинами времени жизни тепловых нейтронов, а также неточностью знания некоторых параметров пласта. Контроль за продвижением газонефтяного контакта Контроль за продвижением газонефтяного контакта (ГНК) осуществляется по следующим данным: а) в неперфорированном интервале пласта по кривым нейтронных методов НГК ННК-Т, ИННК; б) в перфорированном интервале пласта по кривым нейтронных методов, по термометрии, по измерениям гамма-плотномером; в) по промысловым данным. Основными методами контроля за положением ГНК являются стационарные нейтронные методы: НГК, ННК-Т. Возможность нейтронного каротажа по разделению нефтеносной и газоносной частей пласта определяется их различием в объемном содержании водорода. Газоносный пласт отличается от нефтеносного (а также и водоносного) меньшим содержанием водорода и меньшей плотностью, что приводит к повышению показаний НГК и НК-Т при измерениях с зондами, большими инверсионного, против газоносной части пласта. По этому признаку осуществляется разделение газоносной и нефтеносной частей пласта и контроль за продвижением ГНК.( Под ГНК в этом случае понимается граница, вышей которой в нефтяном пласте содержится свободный газ в количестве, превышающем чувствительность метода НК (примерно 10-20% при пористости более 20%). Ниже этой границы обычно получают нефть без свободного газа, выше нефть с газом). На диаграммах НК в однородном пласте положение ГНК устанавливается в точке начала роста показаний над уровнем показаний в заведомо нефтеносной части пласта. В неоднородном пласте положение ГНК может быть определено по результатам сравнения предыдущего и последующего измерений, если за время между измерениями произошло изменение положения ГНК. Сопоставление этих диаграмм позволяет по точке начала увеличения показаний на одной диаграмме относительно другой устанавливать положение ГНК как в момент последующего, так и в момент предыдущего измерения. Положение первоначального ГНК определяется в неоднородном пласте по результатам сравнения двух измерений, выполненных после бурения, когда газ оттеснен от забоя фильтратом промывочной жидкости, и после расформирования зоны проникновения. 2.2. Изучение эксплуатационных характеристик пласта. При исследовании эксплуатационных характеристик продуктивного пласта решаются следующие задачи: определение интервалов притока и поглощения жидкости; определение профиля притока нефти, воды и газа в эксплуатационных скважинах и профиля приемистости в нагнетательных скважинах; выявление обводненных интервалов и установление причин обводнения; определение энергетических параметров пласта. Данные задачи могут решаться при установившихся и неустановившихся режимах работы скважины. В общем случае используется комплекс методов, включающий методы термометрии, расходометрии, влагометрии, резистивиметрии, плотнометрии, барометрии, шумометрии и метод меченого вещества. Выделение интервалов притока (поглощения) Все пласты, против которых фиксируется приток(приемистость) по данным дебитометрии-расходометрии, считаются отдающими(поглощающими). Нижняя граница притока(приемистости) в скважине устанавливается по результатам исследования тремя методами: термометрии,механической и термокондуктивной дебитометрии. Термодебитометрия является основным методом выявления отдающих(поглощающих) пластов. Пример выделения работающих интервалов в обсаженной скважине по кривой термодебитомера. 1 – работающие участки пласта; 2 – неработающие участки пласта; 3- профиль притока флюида; 4 – вода; 5 – нефть. Пороговая чувствительность термодебитомера выше пороговой чувсвительности механического расходомера. В частности, термодебитомер способен обнаружить притоки и при капельном истечении нефти в воду. При небольшой величине зумпфа или когда зумпф в скважине заполнен осадком, выделение нижней границы притока затруднено, так как переход прибора из осадка в воду и отрыв прибора от забоя отражаются на термодебитограмме аномалией, соответствующей началу притока флюида в скважину. Для выявления отдающих(поглощающих) пластов, не выделяемых по данным дебитометрии-расходометрии, к интерпретации привлекаются данные термометрии, проведенные в действующей и затем остановленной на короткое время скважине. Оптимальное время остановки скважины выбирается на основании опыта работ на месторождении по исследованию стабилизации температуры в кровле (для эксплуатационной скважины) или подошве (для нагнетательной скважины) перфорированного интервала. При отсутствии таких сведений измерения проводятся через сутки после остановки скважины. Записывается основная и контрольная термограммы. Исследуются интервал перфорации, ближайшие неперфорированные пласты и примыкающие к ним перемычки. Следует отметить, что интервалы приемистости на термограммах действующих нагнетательных скважин отмечаются лишь в благоприятных случаях (высокая удельная приемистость интервала на фоне низкой суммарной приемистости скважины, небольшое время работы скважины, интервалы приемистости расположены на достаточно большом удалении друг от друга). Поэтому исследования в действующих нагнетательных скважинах проводятся в основном для выделения нижней границы интервала приемистости и установления затрубной циркуляции в нижележащий пласт, не вскрытый перфорацией. При выявлении отдающих пластов в эксплуатационной и пластов, поглощающих воду, в нагнетательной скважине геотерма сопоставляется с термограммой, записанной в остановленной скважине, находящейся в режиме теплового равновесия. Совмещение температурных кривых производится в интервалах неискаженного естественного теплового поля в зумпфе скважины. Обработка и интерпретация материалов исследований выполняются в следующем порядке: По данным промыслово-геофизических методов устанавливаются границы перфорированных пластов и пластов-коллекторов ниже интервала перфорации. Отмечаются интервалы перфорации. По термограмме определяются границы притока флюида из верхних перфорированных пластов и места негерметичности колонны выше интервала перфорации, руководствуясь следующими соображениями: интервалы поступления флюида из пластов характеризуются резко увеличенным значением градиента температур (угла наклона термограммы к оси глубин) по сравнению с перемычками, что обусловлено калориметрическим смешиванием притекающего из пласта флюида с восходящим потоком; градиент температур в перемычках между пластами в зависимости от дебита и длительности работы скважины может быть равным нулю, постоянным или слабо меняться с глубиной, а в интервалах неоднородных пластов он может существенно меняться с глубиной и в отдельныхпропластках уменьшаться до нуля (в однородных пластах градиент температуры постоянен). Поэтому границы притока флюида из верхних перфорированных пластов устанавливаются по точкам перегиба термограммы, соответствующим переходу от слабоменяющегося (в перемычках) к резкоменяющемуся участку градиента температур (в неоднородном пласте) и к участку большого градиента (в однородных пластах). Аналогично устанавливается и верхняя граница притока из нижнего перфорированного пласта. Выделение притока в подошве нижнего перфорированного пласта в общем случае представляет собой сложную задачу, решаемую лишь при комплексной интерпретации данных термометрии и методов, предназначенных для исследования дебита и состава смеси в стволе скважины. При обработке термограммы против нижнего перфорированного пласта по резкому приращению температуры устанавливается подошва отдающего интервала, соответствующая нижней границе притока в полностью вскрытом пласте. Положительная величина приращения температуры в подошве нижнего отдающего интервала указывает на дросселирование по пласту жидкости (нефти или воды), отрицательная на дросселирование газа или на прорывзакачиваемых вод с температурой ниже пластовой. При наличии затрубной циркуляции, а также в случае поступления флюида в скважину из мест негерметичности колонны, расположенных ниже интервала перфорации, дроссельный эффект в подошве нижнего перфорированного пласта может и не проявляться на термограмме. В этом случае границы притока из перфорированного нижнего пласта устанавливаются так же, как и для верхних пластов. При выделении интервалов притока в нижнем перфорированном пласте следует помнить, что в неполностью вскрытом пласте на термограмме подошва отдающего интервала может не соответствовать нижней границе притока. Как правило, величина приращения температуры ?Т в отдающем интервале, не вскрытом перфорацией, ниже по сравнению с ?Т в интервале притока, а термограмма в подошве нижнего перфорированного пласта в этом случае имеет характерный вид «ступеньки». Обработка термограмм, записанных в действующей нагнетательной скважине, в основном сводится к определению нижней границы интервала приемистости скважины по резкому приращению температуры в подошве нижнего принимающего пласта. Положение этой границы ниже интервала перфорации указывает на затрубную циркуляцию воды в нижележащие пласты, либо на негерметичность колонны ниже интервала перфорации. На практике задача выделения интервалов притока(поглощения) решается комплексным методом. В эксплуатационной скважине для решения этой задачи используются и данные методов и сследования состава смеси в стволе скважины. Пример Определение профиля притока и профиля приемистости Определение профилей притока и приемистости по пластам и пропласткам имеет целью установить распределение добываемого и закачиваемого флюида по мощности исследуемого горизонта. Профилем притока или приемистости пласта называется график зависимости количества жидкости или газа, поступающих из единицы его мощности, или количества воды, нагнетаемой в пласт, от глубины залегания работающего интервала. По результатам измерений механическими и термокондуктивными дебитомерами(расходомерами), а также по данным метода высокочувствительной термометрии можно получить профили притока(дебита) и приемистости жидкостей или газа по мощности пласта. При исследовании многопластовой залежи, эксплуатируемой одним фильтром, величины дебита нефти и расхода воды для каждого пласта в отдельности позволяют распределить накопленную добычу нефти и объем закачанной воды между совместно эксплуатируемыми пластами. Эти данные используются затем для анализа разработки: прогнозирования продвижения фронта закачиваемых вод, оценки текущего коэффициента нефтеотдачи раздельно по пластам и т.д. Определение профиля притока и приемистости по данным метода высокочувствительной термометрии основано на дроссельном и калориметрическом эффектах. Пример Выделение работающих интервалов пласта и определение типа флюидов по данным механического и термокондуктивного дебитомеров и данных высокочувствительной термометрии. I – кривая, замеренная термокондуктивным дебитомером типа СТД; II – то же, механическим дебитомером; III, IV – термограммы, полученные в работающей и отсановленной скважине. 1 – нефть; 2 – нефть с водой; 3- вода; 4 – интервал перфорации. На рисунке приведен пример выделения интервалов пласта, отдающих нефть и воду, с помощью высокочувствительной термометрии с использованием дроссельного эффекта. Скважина давала нефть с 30% воды на поверхности. Пласт перфорирован в интервале 2098-2109 м. С целью выявления мест притока нефти и воды выполнено два замера термометром: в работающей скважине проявляются как дроссельный, так и калориметрический эффекты. В остановленной скважине калориметрический эффект через некоторое время исчезает, поэтому на кривой термометрии выявляются интервалы 2098-2103 и 2105,5-2108 м., связанные с проявлением дроссельного эффекта. Аномалия против верхнего интервала значительно больше, чем против нижнего. Величина дроссельного эффекта для нефти почти в 2 раза больше, чем для воды, – нижний интервал дает воду, верхний – нефть. Исследования в действующих скважинах проводятся лишь при установившемся режиме работы скважины и надлежащем техническом ее состоянии (отсутствие затрубной циркуляции между пластами и притоков флюида вне интервалов перфорации). Для более точной интерпретации дебитограмм и расходограмм необходимо иметь точные сведения о типе флюида в исследуемом интервале скважины, получаемые, например, резистивиметром, влагомером, плотномером, а также о дебите и составе жидкости, полученные путем замера на устье скважины. Выявление обводненных интервалов и установление источника обводнения Для контроля процесса вытеснения нефти водой применяют: в скважинах, крепленных стальной неперфорированной колонной высокочувствительную термометрию и ГК; в перфорированных скважинах, кроме того, применяют методы, изучающие состав и дебит жидкости в стволе скважины. Для выявления интервалов обводнения в перфорированных пластах по данным высокочувствительной термометрии предварительно по термограмме действующей скважины выделяются интервалы притока из отдельных пластов. На термограмме такие интервалы могут характеризоваться как положительными, так и отрицательными приращениями температур. К возможным интервалам притока воды относят интервалы отрицательных приращений температуры, расположенные непосредственно ниже интервалов положительных приращений. Из точек термограммы, соответствующих верхней границе интервалов положительных приращений температуры, проводят вспомогательные линии параллельно геотерме в пределах границ притока из пласта условные геотермы. Условная геотерма проводится и из нижней границы притока в скважину, если последняя выделяется по положительному приращению температуры. К возможным интервалам притока воды относят также интервалы отрицательных приращений температуры, в которых температура на термограмме опускается ниже условных г еотерм. Пример выявления обводнения подошвы пласта по данным термометрии. I – скважина работающая; II – скважина остановленная. Признаком возможного обводнения подошвы нижнего отдающего пласта является наличие на термограмме действующей скважины положительных калориметрических ступеней выше нижней границы притока. П ри нарушении герметичности цементного кольца или колонны открывается доступ воды в ствол скважины из водоносного или обводненного пласта, находящегося выше или ниже интервала перфорации. Основным методом выявления затрубной циркуляции является термометрия. Результаты термометрии наиболее надежны, если в скважине имеется зумпф глубиной порядка 10 м. В этом случае признаком циркуляции из нижележащего пласта будет изменение температурного градиента по сравнению с нормальным для данного месторождения. Изменение градиента может быть связано и с нарушением герметичности колонны в зумпфе скважины, что устанавливается по данным расходомера. На поступление воды из вышележащего пласта указывают отрицательная аномалия на термограмме в кровле перфорированного пласта в работающей скважине и против пласта-источника обводнения – положительная аномалия на термограмме, записанной в остановленной скважине. Термометрия, выполненная в кратковременно остановленной скважине, практически однозначно выявляет перетоки воды в пласты, не вскрытые перфорацией. Признаком перетока служит отрицательная аномалия против поглощающего пласта на термограмме. Признаками наличия затрубной циркуляции в нагнетательных скважинах являются быстрый рост приемистости скважины без увеличения давления в пласте; наличие дефектов в цементном камне и обсадной колонне, в перемычках между перфорированными и неперфорированными пластами, образование принимающих участков вне интервалов перфорации. Определение энергетических параметров пласта Давление в пласте определяется путем измерения манометром давления на устье после остановки скважин (прекращения притока флюида в нее и восстановления пластового давления) и пересчета измеренного давления на забойное с учетом гидростатического давления столба жидкости в стволе скважины. В многопластовой залежи, вскрытой одним фильтром, забойное давление в остановленной скважине соответствует максимальному давлению в пластах этой залежи. Определить давление в других пластах залежи, характеризующихся пониженным его значением, таким способом невозможно. При остановке скважины, если перепад давления между пластами (с учетом гидростатического давления столба флюида между ними) превышает критический градиент давления, возникнут межпластовые перетоки жидкости. Таким образом, установление межпластовых перетоков жидкости по измерениям комплексом методов дебитометрии-расходометрии (механической и термокондуктивной) и термометрии, проведенной после остановки скважины в процессе восстановления пластового давления, позволяет качественно выделять пласты с повышенным и пониженным давлениями. Определение давления в отдельных пластах эксплуатируемой многопластовой залежи возможно по результатам комплексных исследований расходомеров и забойным манометром, выполненных на разных режимах работы скважины, так называемом методом установившихся отборов. Исследования этим методом заключаются в изменения режима работы скважины, измерении забойного давления в работающей скважине после выхода ее на установившийся режим работы (когда дебит скважины стабилизируется) и одновременном определении профилей притока и приемистости. По данным исследования строятся графики зависимостей дебитов (расходов) для каждого пласта от забойного давления. Эти графики называются индикаторными диаграммами. По оси абсцисс откладывают дебиты, по оси ординат забойное давление. Путем экстраполяции индикаторных линий каждого пласта до нулевого дебита определяются давления для каждого пласта. Пример Н а рисунке приведены индикаторные диаграммы I-III многопластового объекта, построенного по измерениям забойных давлений и дебитов по каждому пласту на трех режимах работы скважины, и суммарная индикаторная диаграмма IY.Забойное давление на каждом режиме работы скважины замерялось глубинным манометром и равнялось соответственно 143.5; 148;150 153 кгс/см2. Путем экстраполяции индикаторных линий до оси давлений определяются значения пластовых давлений по каждому пласту (РI= 158 кгс/см2;РII=156 кгс/см2;РIII=169.2 кгс/см2) и среднее пластовое давление для объекта в целом РIY , равное давлению на забое при нулевом дебите в закрытой скважине (РIY=162, кгс/см2). |