лекции. Введениеоперационная система (ОС)
Скачать 1.95 Mb.
|
следующей команды. Прерывания происходят асинхронно с работой процессора и непредсказуемо, программист никоим образом не может предугадать, в каком именно месте работы программы произойдет прерывание. Исключительные ситуации возникают во время выполнения процессором команды. К их числу относятся ситуации переполнения, деления на ноль, обращения к отсутствующей странице памяти (см. часть III) и т. д. Для исключительных ситуаций характерно следующее. Исключительные ситуации обнаруживаются процессором во время выполнения команд. Процессор при переходе на выполнение исключительной ситуации сохраняет часть своего состояния перед выполнением текущей команды. Исключительные ситуации возникают синхронно с работой процессора, но непредсказуемо для программиста, если только тот специально не заставил процессор делить некоторое число на ноль. Программные прерывания возникают после выполнения специальных команд, как правило, для выполнения привилегированных действий внутри системных вызовов. Программные прерывания имеют следующие свойства. Программное прерывание происходит в результате выполнения специальной команды. Процессор при выполнении программного прерывания сохраняет свое состояние перед выполнением следующей команды. Программные прерывания, естественно, возникают синхронно с работой процессора и абсолютно предсказуемы программистом. Надо сказать, что реализация похожих механизмов обработки внешних прерываний, исключительных ситуаций и программных прерываний лежит целиком на совести разработчиков процессоров. Существуют вычислительные системы, где все три ситуации обрабатываются по-разному. 8.5 Прямой доступ к памяти (Direct Memory Access – DMA) Использование механизма прерываний позволяет разумно загружать процессор в то время, когда устройство ввода-вывода занимается своей работой. Однако запись или чтение большого количества информации из адресного пространства ввода-вывода (например, с диска) приводят к большому количеству операций ввода-вывода, которые должен выполнять процессор. Для освобождения процессора от операций последовательного вывода данных из оперативной памяти или последовательного ввода в нее был предложен механизм прямого доступа внешних устройств к памяти – ПДП или Direct Memory Access – DMA. Давайте кратко рассмотрим, как работает этот механизм. Для того чтобы какое-либо устройство, кроме процессора, могло записать информацию в память или прочитать ее из памяти, необходимо чтобы это устройство могло забрать у процессора управление локальной магистралью для выставления соответствующих сигналов на шины адреса, данных и управления. Для централизации эти обязанности обычно возлагаются не на каждое устройство в отдельности, а на специальный контроллер – контроллер прямого доступа к памяти. Контроллер прямого доступа к памяти имеет несколько спаренных линий – каналов DMA, которые могут подключаться к различным устройствам. Перед началом использования прямого доступа к памяти этот контроллер необходимо запрограммировать, записав в его порты информацию о том, какой канал или каналы предполагается задействовать, какие операции они будут совершать, какой адрес памяти является начальным для передачи информации и какое количество информации должно быть передано. Получив по одной из линий – каналов DMA сигнал запр оса на передачу данных от внешнего устройства, контроллер по шине управления сообщает процессору о желании взять на себя управление локальной магистралью. Процессор, возможно, через некоторое время, необходимое для завершения его действий с магистралью, передает управление ею контроллеру DMA, известив его специальным сигналом. Контроллер DMA выставляет на адресную шину адрес памяти для передачи очередной порции информации и по второй линии канала прямого доступа к памяти сообщает устройству о готовности магистрали к передаче данных. После этого, используя шину данных и шину управления, контроллер DMA, устройство ввода-вывода и память осуществляют процесс обмена информацией. Затем контроллер прямого доступа к памяти извещает процессор о своем отказе от управления магистралью, и тот берет руководящие функции на себя. При передаче большого количества да нных весь процесс повторяется циклически. При прямом доступе к памяти процессор и контроллер DMA по очереди управляют локальной магистралью. Это, конечно, несколько снижает производительность процессора, так как при выполнении некоторых команд или при чтении очередной порции команд во внутренний кэш он должен поджидать освобождения магистрали, но в целом производительность вычислительной системы существенно возрастает. При подключении к системе нового устройства, которое умеет использовать прямой доступ к памяти, обычно необходимо программно или аппаратно задать номер канала DMA, к которому будет приписано устройство. В отличие от прерываний, где один номер прерывания мог соответствовать нескольким устройствам, каналы DMA всегда находятся в монопольном владении устройств. 8.6 Логические принципы организации ввода - вывода Рассмотренные в предыдущем разделе физические механизмы взаимодействия устройств ввода-вывода с вычислительной системой позволяют понять, почему разнообразные внешние устройства легко могут быть добавлены в существующие компьютеры. Все, что необходимо сделать пользователю при подключении нового устройства, – это отобразить порты устройства в соответствующее адресное пространство, определить, какой номер будет соответствовать прерыванию, генерируемому устройством, и, если нужно, закрепить за устройством некоторый канал DMA. Для нормального функционирования hardware этого будет достаточно. Однако мы до сих пор ничего не сказали о том, как должна быть построена подсистема управления вводом-выводом в операционной системе для легкого и безболезненного добавления новых устройств и какие функции вообще обычно на нее возлагаются. Структура системы ввода-вывода Если поручить неподготовленному пользователю сконструировать систему ввода-вывода, способную работать со всем множеством внешних устройств, то, скорее всего, он окажется в ситуации, в которой находились биологи и зоологи до появления трудов Линнея [ Linnaes, 1789 ]. Все устройства разные, отличаются по выполняемым функциям и своим характеристикам, и кажется, что принципиально невозможно создать систему, которая без больших постоянных переделок позволяла бы охватывать все многообразие видов. Вот перечень лишь нескольких направлений (далеко не полный), по которым различаются устройства. Скорость обмена информацией может варьироваться в диапазоне от нескольких байтов в секунду (клавиатура) до нескольких гигабайтов в секунду (сетевые карты). Одни устройства могут использоваться несколькими процессами параллельно (являются разделяемыми), в то время как другие требуют монопольного захвата процессом. Устройства могут запоминать выведенную информацию для ее последующего ввода или не обладать этой функцией. Устройства, запоминающие информацию, в свою очередь, могут дифференцироваться по формам доступа к сохраненной информации: обеспечивать к ней последовательный доступ в жестко заданном порядке или уметь находить и передавать только необходимую порцию данных. Часть устройств умеет передавать данные только по одному байту последовательно (символьные устройства), а часть устройств умеет передавать блок байтов как единое целое (блочные устройства). Существуют устройства, предназначенные только для ввода информации, устройства, предназначенные только для вывода информации, и устройства, которые могут выполнять и ввод, и вывод. В области технического обеспечения удалось выделить несколько основных принципов взаимодействия внешних устройств с вычислительной системой, т. е. создать единый интерфейс для их подключения, возложив все специфические действия на контроллеры самих устройств. Тем самым конструкторы вычислительных систем переложили все хлопоты, связанные с подключением внешней аппаратуры, на разработчиков самой аппаратуры, заставляя их придерживаться определенного стандарта. Похожий подход оказался продуктивным и в области программного подключения устройств ввода-вывода. Подобно тому как Линнею удалось заложить основы систематизации знаний о растительном и животном мире, разделив все живое в природе на относительно небольшое число классов и отрядов, мы можем разделить устройства на относительно небольшое число типов, отличающихся по набору операций, которые могут быть ими выполнены, считая все остальные различия несущественными. Мы можем затем специфицировать интерфейсы между ядром операционной системы, осуществляющим некоторую общую политику ввода-вывода, и программными частями, непосредственно управляющими устройствами, для каждого из таких типов. Более того, разработчики операционных систем получают возможность освободиться от написания и тестирования этих специфических программных частей, получивших название драйверов, передав эту деятельность производителям самих внешних устройств. Фактически мы приходим к использованию принципа уровневого или слоеного построени я системы управления вводом-выводом для операционной системы (см. Рис. 8.1). Два нижних уровня этой слоеной системы составляет hardware: сами устройства, непосредственно выполняющие операции, и их контроллеры, служащие для организации совместной работы устройств и остальной вычислительной системы. Следующий уровень составляют драйверы устройств ввода-вывода, скрывающие от разработчиков операционных систем особенности функционирования конкретных приборов и обеспечивающие четко определенный интерфейс между hardware и вышележащим уровнем – уровнем базовой подсистемы ввода-вывода, которая, в свою очередь, предоставляет механизм взаимодействия между драйверами и программной частью вычислительной системы в целом. Рис. 8.1 Структура системы ввода-вывода В последующих разделах мы подробнее рассмотрим организацию и функции набора драйверов и базовой подсистемы ввода-вывода. 8.7 Систематизация внешних устройств и интерфейс между базовой подсистемой ввода - вывода и драйверами Как и система видов Линнея, система типов устройств является далеко не полной и не строго выдержанной. Устройства обычно принято разделять по преобладающему типу интерфейса на следующие виды: символьные (клавиатура, модем, терминал и т. п.); блочные (магнитные и оптические диски и ленты, и т. д.); сетевые (сетевые карты); все остальные (таймеры, графические дисплеи, телевизионные устройства, видеокамеры и т. п.); Такое деление является весьма условным. В одних операционных системах сетевые устройства могут не выделяться в отдельную группу, в некоторых других – отдельные группы составляют звуковые устройства и видеоустройства и т. д. Некоторые группы в свою очередь могут разбиваться на подгруппы: подгруппа жестких дисков, подгруппа мышек, подгруппа принтеров. Нас такие детали не интересуют. Мы не ставим перед собой цель осуществить систематизацию всех возможных устройств, которые могут быть подключены к вычислительной системе. Единственное, для чего нам понадобится эта классификация, так это для иллюстрации того положения, что устройства могут быть разделены на группы по выполняемым ими функциям, и для понимания функций драйверов, и интерфейса между ними и базовой подсистемой ввода-вывода. Для этого мы рассмотрим только две группы устройств: символьные и блочные. Как уже упоминалось в предыдущем разделе, символьные устройства – это устройства, которые умеют передавать данные только последовательно, байт за байтом, а блочные устройства – это устройства, которые могут передавать блок байтов как единое целое. К символьным устройствам обычно относятся устройства ввода информации, которые спонтанно генерируют входные данные: клавиатура, мышь, модем, джойстик. К ним же относятся и устройства вывода информации, для которых характерно представление данных в виде линейного потока: принтеры, звуковые карты и т. д. По своей природе символьные устройства обычно умеют совершать две общие операции: ввести символ (байт) и вывести символ (байт) – get и put. Для блочных устройств, таких как магнитные и оптические диски, ленты и т. п. естественными являются операции чтения и записи блока информации – read и write, а также, для устройств прямого доступа, операция поиска требуемого блока информации – seek. Драйверы символьных и блочных устройств должны предоставлять базовой подсистеме ввода-вывода функции для осуществления описанных общих операций. Помимо общих операций, некоторые устройства могут выполнять операции специфические, свойственные только им – например, звуковые карты умеют увеличивать или уменьшать среднюю громкость звучания, дисплеи умеют изменять свою разрешающую способность. Для выполнения таких специфических действий в интерфейс между драйвером и базовой подсистемой ввода-вывода обычно входит еще одна функция, позволяющая непосредственно передавать драйверу устройства произвольную команду с произвольными параметрами, что позволяет задействовать любую возможность драйвера без изменения интерфейса. В операционной системе Unix такая функция получила название ioctl (от input-output control). Помимо функций read, write, seek (для блочных устройств), get, put (для символьных устройств) и ioctl, в состав интерфейса обычно включают еще следующие функции. Функцию инициализации или повторной инициализации работы драйвера и устройства – open. Функцию временного завершения работы с устройством (может, например, вызывать отключение устройства) – close. Функцию опроса состояния устройства (если по каким-либо причинам работа с устройством производится методом опроса его состояния, например, в операционных системах Windows NT и Windows 9x так построена работа с принтерами через параллельный порт) – poll. Функцию останова драйвера, которая вызывается при останове операционной системы или выгрузке драйвера из памяти, halt. Существует еще ряд действий, выполнение которых может быть возложено на драйвер, но поскольку, как правило, это действия базовой подсистемы ввода-вывода, мы поговорим о них в следующем разделе. Приведенные выше названия функций, конечно, являются условными и могут меняться от одной операционной системы к другой, но действия, выполняемые драйверами, характерны для большинства операционных систем, и соответствующие функции присутствуют в интерфейсах к ним. 8.8 Функции базовой подсистемы ввода - вывода Базовая подсистема ввода-вывода служит посредником между процессами вычислительной системы и набором драйверов. Системные вызовы для выполнения операций ввода-вывода трансформируются ею в вызовы функций необходимого драйвера устройства. Однако обязанности базовой подсистемы не сводятся к выполнению только действий трансляции общего системного вызова в обращение к частной функции драйвера. Базовая подсистема предоставляет вычислительной системе такие услуги, как поддержка блокирующихся, неблокирующихся и асинхронных системных вызовов, буферизация и кэширование входных и выходных данных, осуществление spooling'a и монопольного захвата внешних устройств, обработка ошибок и прерываний, возникающих при операциях ввода-вывода, планирование последовательности запросов на выполнение этих операций. Давайте остановимся на этих услугах подробнее. Блокирующиеся, неблокирующиеся и асинхронные системные вызовы Все системные вызовы, связанные с осуществлением операций ввода-вывода, можно разбить на три группы по способам реализации взаимодействия процесса и устройства ввода-вывода. К первой, наиболее привычной для большинства программистов группе относятся блокирующиеся системные вызовы. Как следует из самого названия, применение такого вызова приводит к блокировке инициировавшего его процесса, т. е. процесс переводится операционной системой из состояния исполнение в состояние ожидание. Завершив выполнение всех операций ввода-вывода, предписанных системным вызовом, операционная система переводит процесс из состояния ожидание в состояние готовность. После того как процесс будет снова выбран для исполнения, в нем произойдет окончательный возврат из системного вызова. Типичным для применения такого системного вызова является случай, когда процессу необходимо получить от устройства строго определенное количество данных, без которых он не может выполнять работу далее. Ко второй группе относятся неблокирующиеся системные вызовы. Их название не совсем точно отражает суть дела. В простейшем случае процесс, применивший неблокирующийся вызов, не переводится в состояние ожидание вообще. Системный вызов возвращается немедленно, выполнив предписанные ему операции ввода-вывода полностью, частично или не выполнив совсем, в зависимости от текущей ситуации (состояния устройства, наличия данных и т. д.). В более сложных ситуациях процесс может блокироваться, но условием его разблокирования является завершение всех необходимых операций или окончание некоторого промежутка времени. Типичным случаем применения неблокирующегося системного вызова может являться периодическая проверка на поступление информации с клавиатуры при выполнении трудоемких расчетов. К третьей группе относятся асинхронные системные вызовы. Процесс, использовавший асинхронный системный вызов, никогда в нем не блокируется. Системный вызов инициирует выполнение необходимых операций ввода-вывода и немедленно возвращается, после чего процесс продолжает свою регулярную деятельность. Об окончании завершения операции ввода-вывода операционная система впоследствии информирует процесс изменением значений некоторых переменных, передачей ему сигнала или сообщения или каким-либо иным способом. Необходимо четко понимать разницу между неблокирующимися и асинхронными вызовами. Неблокирующийся системный вызов для выполнения операции read вернется немедленно, но может прочитать запрошенное количество байтов, меньшее количество и ли вообще ничего. Асинхронный системный вызов для этой операции также вернется немедленно, но требуемое количество байтов рано или поздно будет прочитано в полном объеме. |