Главная страница
Навигация по странице:

  • 1. Антивещество

  • 2. Ускорители

  • Рис. I.2. Эрнест Лоуренс с макетом циклотрона 242

  • 3. Фермионы и бозоны

  • Уиггинс. 5 нерешенных проблем науки. Янко Слава (Библиотека FortDa )


    Скачать 5.17 Mb.
    НазваниеЯнко Слава (Библиотека FortDa )
    АнкорУиггинс. 5 нерешенных проблем науки.pdf
    Дата03.08.2018
    Размер5.17 Mb.
    Формат файлаpdf
    Имя файлаУиггинс. 5 нерешенных проблем науки.pdf
    ТипКнига
    #22443
    КатегорияФизика
    страница16 из 22
    1   ...   12   13   14   15   16   17   18   19   ...   22
    233
    Удар небесного тела с поперечником 1 км, случающийся раз в миллион лет, может привести к огромным разрушениям и даже вызвать климатические изменения. Столкновение с небесным телом размером 10 км в поперечнике, вероятно, и привело к исчезновению динозавров на рубеже меловой и третичной эпох 65 млн лет назад. Хотя тело такого размера может появиться лишь раз в 100 млн лет, на Земле уже предпринимают шаги, чтобы не быть застигнутыми врасплох. Разрабатываются проекты «Околоземные объекты» (NEOs) и
    «Наблюдение за околоземными астероидами» (NEAT), в соответствии с которыми к 2010 году удастся отслеживать 90% астероидов с поперечником более 1 км, общее число которых, по различным оценкам,

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    117 находится в пределах 500—1000. Другая программа, «Spacewatch», осуществляемая Аризонским университетом, состоит в наблюдении за небом в поисках возможных «кандидатов» на столкновение с Землей.
    За более подробными сведениями обращайтесь на узлы Всемирной Паутины:
    http://neat.jpl.nasa.gov,
    http://neo.jpl.nasa.gov
    и
    http://spacewatch.lpl.arizona.edu/
    234
    Что было до «большого взрыва»?
    Поскольку время и пространство ведут свой отчет с «большого взрыва», понятие «до» не имеет никакого смысла. Это равносильно вопросу, что находится северней Северного полюса. Или, как бы выразилась американская писательница Гертруда Стайн
    *
    , нет никакого «затем» затем
    **
    . Но подобные трудности не останавливают теоретиков. Возможно, до «большого взрыва» время было мнимым; вероятно, не было вообще ничего, и Вселенная возникла из флуктуации вакуума; или же произошло столкновение с другой «браной» (см. затронутый ранее вопрос о множественных вселенных). Таким теориям трудно найти экспериментальное подтверждение, поскольку огромная температура первоначального огненного шара не допускала создания каких- либо атомных или субатомных образований, которые могли бы существовать до начала расширения Вселенной.
    *
    Стайн Гертруда
    (1874—1946) — американская писательница, теоретик литературы. Модернист. Формально- экспериментальная проза («Становление американцев», 1906—1908, издана 1925) в русле литературы «потока сознания».
    Биографическая книга «Автобиография Элис Б. Ток-лас» (1933). Стайн принадлежит выражение «потерянное поколение» (на рус. яз.:
    Стайн Г.
    Автобиография Элис Б. Токлас. СПб., 2000;
    Стайн Г.
    Автобиография Элис Б. Токлас. Пикассо. Лекции в
    Америке. М., 2001).
    **
    Намек на слова
    there is no there, there
    из 4-й главы повести 1936 года (опубликована в 1937 году) «Биография всех», являющейся продолжением ее знаменитого романа «Автобиография Элис Б. Токлас».

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    118
    Список идей
    Многие идеи, о которых повествует наша книга, рассматриваются лишь в той мере, в какой они связаны с крупнейшими, не решенными наукой задачами. Однако читателям, возможно, хочется получить более подробные сведения. Данный раздел позволит углубить представления о затронутых вскользь темах. Темы расположены в порядке их появления на страницах книги, и при этом даются ссылки на источники, если вы пожелаете расширить свой кругозор. Дополнительные сведения содержатся в разделе «Источники для углубленного изучения».
    Надеемся, что эти идеи смогут удовлетворить ваше любопытство или даже разжечь его. В будущем удастся решить некоторые из этих проблем, но им на смену придут другие.
    1. Антивещество
    Почти каждой элементарной частице соответствует античастица. Как правило, античастицы обладают той же массой, что и их обычный собрат с зарядом одинаковой величины, только противоположного знака. Как видно на рис. I.1, каждому кварку соответствует свой антикварк (антиверхний, антиочарованный...), каждому лептону — свой антилептон
    236
    Рис. I.1. Основные частицы
    (антиэлектронное нейтрино, антимюонное нейтрино...), а W
    +
    - и W
    -
    -бозону — свои античастицы. Лишь у фотона, Z-бозона, глюона (всего восемь разновидностей) и гипотетического гравитона нет античастиц. Иначе говоря, они сами служат для себя античастицами.
    Как упоминалось в гл. 2, антивещество было предсказано теорией, когда в 1928 году британский физик П. А.
    М. Дирак объединил квантовую механику со специальной теорией относительности. Сходным, но более простым примером здесь могут послужить решения уравнения
    х
    2
    =
    9,
    равные +3 и —3. Зачастую при наличии у уравнения двух решений одно обычно отбрасывают, считая не имеющим физического смысла. Ученые пытались исключить решение уравнения Дирака, допускавшее существование подобной электрону частицы, но несущей положительный, а не отрицательный заряд. Но спустя четыре года [1932] американский физик Карл Андерсон представил опытные свидетельства существования позитрона при исследовании космических лучей, так что предсказание подтвердилось. В 1955 году в Калифорнийском уни-
    237
    верситете Эмилио Сегре и Оуэн Чемберлен наблюдали антипротон, а антинейтрон обнаружился годом позже.
    Событие, сотворившее электрон и позитрон в диффузионной камере у Андерсона в 1932 году, именуют рождением пар. Световой фотон в космических лучах отдает всю свою энергию, которая превращается в массу в соответствии с уравнением Эйнштейна
    Е = тс
    2
    .
    При столкновении электрона с позитроном их масса полностью переходит в энергию, так что в итоге два световых фотона разлетаются в противоположные стороны. Данный процесс называют аннигиляцией, и он состоит в превращении массы в энергию, величина которой вновь определяется уравнением Эйнштейна.
    Теоретически ничто не может помешать антипротонам соединиться с антинейтронами для образования антиядер, а антиэлектронам примкнуть к этим антиядрам с образованием антиатомов. И действительно, в 1995 году в Европейской лаборатории физики элементарных частиц возглавляемому немецким физиком Вальтером
    Олертом коллективу ученых удалось получить девять атомов антиводорода. Только не подумайте, что эти антиатомы устроили переполох в лаборатории. Ввиду подавляющего перевеса обычного вещества девять атомов антиводорода не продержались и сорок миллиардных секунды.
    Научная фантастика привлекает огромное количество антивещества, особенно в качестве топлива для

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    119 космических кораблей. Наибольшая трудность в создании движителя на основе антивещества сопряжена с его хранением и радиоактивным загрязнением. Как бы ни бились инженеры над созданием космических кораблей, работающих на основе антивещества, встает вопрос о безопасности, поскольку один грамм аннигилирующего вещества (антивещества) выделяет энергию, сравнимую с энергией сброшенной в 1945 году на Японию атомной бомбы.
    Не существуют ли где-то в далекой галактике или даже в Млечном Пути залежи антивещества? В конце концов, если
    238
    бы единственной связью с этими галактиками для нас служили излучаемые ими световые фотоны, мы оставались бы в неведении. Фотон — сам себе античастица, так что мы не могли бы отличить обыкновенные галактики от галактик из антивещества, поскольку от тех и других исходили бы фотоны. Все это верно, однако постоянно обрушивающиеся на нас космические лучи содержат не одни фотоны, только никакого неведомого антивещества там нет. Кроме того, в случае протон-антипротонной аннигиляции на краю антигалактики излучался бы свет определенной частоты. Такого света пока не наблюдалось. Похоже, что Вселенная почти целиком состоит из обычного вещества.
    Однако отсутствие антивещества порождает другую трудность. Если населяемая нами Вселенная симметрична, то при «большом взрыве» должно было появиться одинаковое количество вещества и антивещества, и они бы полностью взаимно уничтожились. Некому тогда было бы обсуждать этот вопрос. Куда же делось антивещество? Согласно одной теории, возникла антивселенная, которая где-то затерялась, возможно на одной из «бран» из М-теории (см. гл. 2).
    Недавние опыты указывают на асимметрию в скорости распада некоторых видов вещества и антивещества.
    Мезоны, двухкварковые частицы, нестабильны, и поэтому их нет в обычном веществе. Лишь разновидность мезонов — К-мезон был тщательно изучен. Различную скорость распада у К-мезона и антиК-мезона обнаружила в 1957 году физик из Колумбийского университета By Цзяньсюн. В 2001 году опыты на ускорителях в
    Стэнфордском университете и в японском академгородке Цукуба [расположенном в 35 км к северо-востоку от
    Токио] выявили асимметрию в распаде В-мезонов и антиВ-мезонов, где антиВ-мезоны распадались чуть быстрее.
    Величина асимметрии будет уточняться по мере получения данных в ходе этих долгосрочных исследований.
    Если антивещество распадается быстрее обычного вещества, такое положение можно уподобить сражению миллионного войска с миллионным антивойском. Если каждый
    239
    воин будет убивать одного неприятеля, то к концу сражения останется один воин. Вещество и антивещество взаимно уничтожатся, но благодаря крохотному превышению обычное вещество возобладает. Если такой подход верен, можно представить, сколько вещества было до великой аннигиляции.
    Предсказанные стандартной моделью величины нарушения симметрии в скорости распада слишком малы, чтобы получилось наблюдаемое ныне во Вселенной количество вещества, но тут готова предложить свои услуги более юная М-теория.
    Для более подробного ознакомления с проблемой см. статью: Sarah Graham «Explore: In Search of Antimatter»
    (
    Scientific American.
    2001. August 20), размещенную во
    Всемирной
    Паутине по адресу:
    http://physicsweb.org/article/news/5/3/1/1
    2. Ускорители
    Как видно из названия, ускоритель разгоняет медленно движущиеся частицы. Частицы с более высокими скоростями обладают более высокой энергией, так что физика высоких энергии развивалась совместно с ускорителями частиц. Польза от частиц высоких энергий стала очевидной, когда американский физик Карл
    Андерсон обнаружил античастицу электрона — позитрон — среди следов, оставляемых в диффузионной камере после бомбардировки космическими лучами. Поскольку космические лучи приходят к нам, обладая различной энергией, отовсюду и когда им заблагорассудится, для проведения систематических опытов над элементарными частицами требовался более надежный источник частиц высокой энергии.
    Линейные ускорители разгоняют заряженные частицы в электромагнитном поле по прямой, подобно тому как разгоняют электроны в электронно-лучевых трубках телевизи-
    240
    онных приемников. Мишень устанавливают в конце пути частицы, а датчики, чувствительные к оставленным продуктами столкновения частиц следам, регистрируют последствия столкновения. Для получения все более высоких энергий требуется постоянно увеличивать длину ускорителей. Стэнфордский центр линейного ускорителя с туннелем длиной 3,2 км (2 мили) разгоняет электроны (или позитроны) посредством обычной электромагнитной волны, подобно микроволновой печи. Для более подробного ознакомления см. узел
    Всемирной Паутины
    http://www.slac.stanford.edu/
    Другая разновидность ускорителя — круговой. Первый круговой ускоритель был изобретен американским физиком Эрнестом Лоуренсом и получил название «циклотрон». В 1928 году Калифорнийский университет в
    Беркли переманил к себе из Йельского университета 27-летнего Лоуренса, намериваясь создать у себя наряду с химическим столь же крепкое физическое отделение. На следующий год Лоуренсу, внуку норвежских

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    120 переселенцев, довелось просматривать один немецкий электротехнический журнал. Он увидел наброски устройства, предлагаемого норвежским инженером Ролфом Видероэ для разгона зарядов двойным пропусканием их через ускоряющее поле, изменяя направление поля таким образом, что заряды получали двойную энергию.
    Поначалу огромные технические трудности отпугивали Лоуренса. Однако, не желая отставать в гонке за высокими энергиями, в начале 1930 года он поручает создание такого устройства аспиранту Стэнли Ливингстону.
    К январю 1931 года Лоуренс и Ливингстон располагали работающим макетом циклотрона (рис. I.2) с поперечником 4,5 дюйма [1 дюйм = 2,54 см], разгонявшим ионы водорода до энергии 80 тыс. электронвольт (эВ).
    В 1939 году Лоуренс получил Нобелевскую премию за изобретение циклотрона. В 1940 году в США насчитывалось 22 готовых или строящихся циклотрона, и более 11 — за границей.
    Вторая мировая война замедлила поступь циклотронов. Но стоило ей отгреметь, как новшества позволили суще-
    241
    ственно нарастить мощь установок. Появился синхротрон, где изменением магнитного поля частицы разгонялись по орбитам с неизменным радиусом. Это позволяло уменьшить пространство, где поддерживался вакуум, и тем самым упрощалось управление пучком.
    Затем стали удерживать частицы на круговой орбите, компенсируя потери на излучение. Это обеспечивало так называемое накопительное кольцо. Наконец поставили два таких кольца, так что пучки частиц направляли друг на друга. Такое перекрестное расположение накопительных колец позволило получить много важнейших сведений об элементарных частицах. В Соединенных Штатах крупнейший ускоритель принадлежит
    Национальной лаборатории высокоэнергетических исследований имени Энрико Ферми (FNAL) в Батавии (штат
    Иллинойс), близ Чикаго. Созданная в 1968 году лаборатория располагает самым мощным в
    Рис. I.2. Эрнест Лоуренс с макетом циклотрона
    242
    мире ускорителем частиц «Tevatron», способным обеспечивать встречные пучки энергией порядка 0,980 трлн эВ (ТэВ): разгоняющихся по часовой стрелке протонов и против часовой стрелки — антипротонов. Протон- антипротонное столкновение в точках взаимодействия частиц создает энергию 1,96 ТэВ.
    Для более подробного ознакомления с проблемой см. узел Всемирной Паутины
    www.fnal.gov
    Фундаментальными изысканиями занят CERN (Европейская организация по ядерным исследованиям), расположенный на границе Франции и Швейцарии. CERN располагает десятью ускорителями. Там ведут исследования ученые 80 национальностей из 500 университетов. Более подробные сведения о CERN'e см. на узле
    Всемирной Паутины
    http://public.web.cern.ch/Public
    Крупнейший ускоритель в CERN'e, электрон-позитронный коллайдер (LEP) имел самую длинную в мире траекторию разгона пучка 27 км. LEP теперь в прошлом; его тоннель переоборудуется для использования уже в качестве большого адронного коллайдера (LHC), где протоны будут сталкиваться с протонами при энергии 7
    ТэВ. Со вступлением в строй в 2005 году он станет крупнейшим в мире.
    Для более подробного ознакомления с LHC см. узел Всемирной Паутины
    http://lhc-new-
    homepage.web.cern.ch/lhc-new-homepage/
    Некоторые теоретики считают, что новый LHC сможет создавать крохотные черные дыры со скоростью одной такой дыры в секунду, называя его производителем черных дыр. Эти черные дыры будут исчезать в течение долей секунды, но при этом возможно возникновение всеми разыскиваемой частицы — бозона Хиггса, о которой шла речь в гл. 2. По словам сотрудника Мэрилендского университета Грегори Ландсберга, все это вполне может случиться «за один час работы» в «черных дырах на большом адронном коллайдере» (S. Dimopoulos, G.
    Landsberg,
    Physical Review Letters 87
    (2001): 161602).
    243

    Янко Слава
    (Библиотека
    Fort/Da
    ) || http://yanko.lib.ru
    Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР-
    ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
    121
    Узлы Всемирной Паутины: www.aip.org/history/lawrence/first.htm
    ; www.lbl.gov/Science-Articles/Archive/early-years.html
    3. Фермионы и бозоны
    Все частицы, составляющие Вселенную, распадаются на две группы: фермионы и бозоны. Подобное различение ввели аспиранты Лейденского университета (Голландия) Сэмюэль Гаудсмит и Джордж Уленбек.
    Гаудсмит, больше занятый исследованиями, заметил дополнительное расщепление спектра излучения атомов гелия. Уленбек, лучше знавший классическую физику, усмотрел причину такого расщепления в некоем внутреннем свойстве электрона. Вместе они пришли к заключению, что электрон изначально обладает определенным угловым моментом — спином [статья 1925 года в
    Die Naturwissenschaften.
    № 13. S. 953-954].
    Основы квантовой механики тогда только закладывались, так что данное представление привело к добавлению четвертого квантового числа (помимо главного, орбитального и магнитного), названного спиновым квантовым. Электрон изображают в виде крошечного, стремительно вращающегося волчка, однако подобное описание не надо воспринимать буквально. Внутренний угловой момент электрона, спин, равен ±
    1
    /
    2
    (
    h
    /2р), где
    п
    — постоянная Планка. Понятие «спин» связано с привычным взглядом на электрон, поскольку спиновое квантовое число имеет два значения +
    1
    /
    2
    (
    h
    /2р) и -
    1
    /
    2
    (
    h
    /2р), соответствуя как бы вращению [ускоряющемуся]
    «вверх» и вращению [падающему] «вниз». В 1928 году разработка британским физиком П. Дираком релятивистской квантовой механики подвела теоретическую базу под спин электрона; догадка Гаудсмита и
    Уленбека оказалась весьма удачной.
    244
    В 1925 году австрийский физик Вольфганг Паули заключил, что два электрона не могут находиться в одном квантовом состоянии на одном и том же месте. Этот принцип запрета Паули лежит в основе Периодической таблицы химических элементов.
    При изучении статистического поведения электронов итальянско-американский физик Энрико Ферми и Дирак разработали теорию статистики Ферми—Дирака. Ее положения в дальнейшем были распространены и на другие частицы с полуцелым спином А/2р. Эти частицы, названные
    фермионами,
    охватывают собой все лептоны и кварки. Таким образом, массу Вселенной составляют фермионы.
    Изучением частиц с нулевым или целым спином
    h
    /2р в 1924 году занимался индийский физик Шатьендранат
    Бозе. Работая в университете г. Дакка (Бангладеш), Бозе послал результаты своих изысканий для отзыва
    Эйнштейну. Тот перевел его труд на немецкий язык и настоятельно посоветовал издать [
    Bose S. N.
    Plancks Gesetz und Lichtquanten Hypothese // Zeitschrift für Physik. 1924. № 26; на рус. яз.:
    Бозе Ш.
    Закон Планка и гипотеза световых квантов //
    Эйнштейн А.
    Собр. научных трудов. М., 1966]. На следующий год Эйнштейн расширил результаты Бозе с учетом всех частиц, не являющихся фермионами [
    Einstein А.
    Quantentheorie des einatomigen idealen Gases // Sitzungsberichte der Preußischen Akademie der Wissenschaften, Phys-math. Kl. 1924; 1925; на рус. яз.:
    Эйнштейн А.
    Квантовая теория одноатомного идеального газа // Собр. научных трудов. Т. 3]. Статистическое поведение таких частиц стали именовать статистикой Бозе— Эйнштейна. Подчиняющиеся этой статистике частицы Дирак назвал
    бозонами.
    Переносчики всех взаимодействий — фотон у электромагнитного, глюоны у сильного, и W- и Z-частицы у слабого — относятся к бозонам.
    Если два фермиона не могут находиться в одном и том же квантовом состоянии, то для бозонов такого ограничения не существует. И действительно, чем больше бозонов находится в определенном энергетическом состоянии, тем
    1   ...   12   13   14   15   16   17   18   19   ...   22


    написать администратору сайта