Главная страница

Шпоры по химииГОТОВО. Закон эквивалентов Закон эквивалентов Все вещества реагируют и образуются в эквивалентных соотношениях. Эквивалентное соотношение означает одинаковое число моль эквивалентов. Т. о закон эквивалентов можно сформулировать иначе


Скачать 44.5 Kb.
НазваниеЗакон эквивалентов Закон эквивалентов Все вещества реагируют и образуются в эквивалентных соотношениях. Эквивалентное соотношение означает одинаковое число моль эквивалентов. Т. о закон эквивалентов можно сформулировать иначе
АнкорШпоры по химииГОТОВО.docx
Дата19.12.2017
Размер44.5 Kb.
Формат файлаdocx
Имя файлаШпоры по химииГОТОВО.docx
ТипЗакон
#12171
КатегорияХимия

Закон эквивалентов

Закон эквивалентов: Все вещества реагируют и образуются в эквивалентных соотношениях. Эквивалентное соотношение означает одинаковое число моль эквивалентов. Т.о. закон эквивалентов можно сформулировать иначе: число моль эквивалентов для всех веществ, участвующих в реакции, одинаково.
ХИМИЧЕСКИЙ ЭКВИВАЛЕНТ

Эквивалент – это реальная или условная частица, которая в кислотно-основных реакциях присоединяет (или отдает) один ион Н+ или ОН–, в окислительно-восстановительных реакциях принимает (или отдает) один электрон, реагирует с одним атомом водорода или с одним эквивалентом другого вещества. Например, рассмотрим следующую реакцию:

H3PO4 + 2KOH ® K2HPO4 + 2H2O.

Число, показывающее, какая часть молекулы или другой частицы вещества соответствует эквиваленту, называется фактором эквивалентности (fЭ).
КЛАССИФИКАЦИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Простые вещества. Молекулы состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения). Молекулы состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Простые – Металлы, неметаллы

Сложные – оксиды,основания, кислоты,соли

Резкой границы между металлами и неметаллами нет, т.к. есть простые вещества, проявляющие двойственные свойства.

Основания - сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами (с точки зрения теории электролитической диссоциации, основания - сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид - анионы OH-).

Классификация. Растворимые в воде (щёлочи) и нерастворимые. Амфотерные основания проявляют также свойства слабых кислот.

Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород.
Модель атома Резерфорда

Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10–14–10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы. Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка ρ ≈ 1015 г/см3. Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома. Впоследствии удалось установить, что если заряд электрона принять за единицу, то заряд ядра в точности равен номеру данного элемента в таблице Менделеева.
Квантовая теория света

Согласно этой теории, атомы всегда излучают или принимают лучевую энергию только порциями, прерывно, а именно определенными квантами (кванты энергии), величина энергии которых равна частоте колебаний (скорость света, деленная на длину волны) соответствующего вида излучения, умноженной на планковский квант действия (см. Константа, Микрофизика, а также Квантовая механика). Квантовая теория была положена (гл. о. Эйнштейном) в основу квантовой теории света (корпускулярная теория света), по которой свет также состоит из квантов, движущихся со скоростью света (световые кванты, фотоны).
Квантовое число

Квантовое число n – главное. Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He+, Li2+ и т. д.). В этом случае энергия электрона. где n принимает значения от 1 до ∞. Чем меньше n, тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном.

В многоэлектронных атомах электроны с одинаковыми значениями n образуют слой или уровень, обозначаемый буквами K, L, M, N, O, P и Q. Буква K соответствует первому уровню, L – второму и т. д.



Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - подуровнем.
Периодический закон и система Менделеева

В основу Периодического закона Д.И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов.

Расположив 63 известных в то время элемента в порядке возрастания их атомных масс, Д.И. Менделеев получил естественный (природный) ряд химических элементов, в котором он обнаружил периодическую повторяемостьхимических свойств.

Например, свойства типичного металла литий Li повторялись у элементов натрий Na и калий K, свойства типичного неметалла фтор F - у элементов хлор Cl, бром Br, иод I.

У некоторых элементов Д.И. Менделеев не обнаружил химических аналогов (например, у алюминия Al и кремния Si), поскольку такие аналоги в то время были еще неизвестны. Для них он оставил в естественном ряду пустые места и на основе периодической повторяемости предсказал их химические свойства. 
После открытия соответствующих элементов (аналога алюминия - галлия Ga, аналога кремния - германия Ge и др.) предсказания Д.И. Менделеева полностью подтвердились.

Периодический закон в формулировке Д.И. Менделеева:

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов

На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов.
Свойства атомов: энергия ионизации, сродства к электрону и электроотрицательность

Магнитные характеристики атома
Электрон обладает собственным магнитным моментом, который квантуется по направлению параллельно или противоположно приложенному магнитному полю. Если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины (согласно принципу Паули), то они гасят друг друга. В этом случае говорят, что электроны спаренные. Атомы, имеющие только спаренные электроны, выталкиваются из магнитного поля. Такие атомы называются диамагнитными. Атомы, имеющие один или несколько неспаренных электронов, втягиваются в магнитное поле. Они называются диамагнитными.
Магнитный момент атома, характеризующий интенсивность взаимодействия атома с магнитным полем, практически пропорционален числу неспаренных электронов.
Особенности электронной структуры атомов различных элементов отражаются в таких энергетических характеристиках, как энергия ионизации и сродство к электрону.
Энергия ионизации
Энергия (потенциал) ионизации атома Ei - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением
Х = Х+ + е−
Ее значения известны для атомов всех элементов Периодической системы. Например, энергия ионизации атома водорода соответствует переходу электрона с 1s-подуровня энергии (−1312,1 кДж/моль) на подуровень с нулевой энергией и равна +1312,1 кДж/моль.

В изменении первых потенциалов ионизации, соответствующих удалению одного электрона, атомов явно выражена периодичность при увеличении порядкового номера атома:

При движении слева направо по периоду энергия ионизации, вообще говоря, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.

Для одного и того же атома вторая, третья и последующие энергии ионизации всегда увеличиваются, так как электрон приходится отрывать от положительно заряженного иона. Например, для атома лития первая, вторая и третья энергии ионизации равны 520,3, 7298,1 и 11814,9 кДж/моль, соответственно.
Последовательность отрыва электронов - обычна обратная последовательности заселения орбиталей электронами в соответствии с принципом минимума энергии. Однако элементы, у которых заселяются d-орбитали, являются исключениями - в первую очередь они теряют не d-, а s-электроны.
Сродство к электрону
Сродство атома к электрону Ae - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона Х−:
Х− = Х + е−
Наибольшим сродством к электрону обладают атомы галогенов. Например, для атома фтора присоединение электрона сопровождается выделением 327,9 кДж/моль энергии. Для ряда элементов сродство к электрону близко к нулю или отрицательно, что значит отсутствие устойчивого аниона для данного элемента.
Обычно сродство к электрону для атомов различных элементов уменьшается параллельно с ростом энергии их ионизации. Однако для некоторых пар элементов имеются исключения:

Объяснение этому можно дать, основываясь на меньших размерах первых атомов и большем электрон-электронном отталкивании в них.
Электроотрицательность
Электротрицательность характеризует способность атома химического элемента смещать в свою сторону электронное облако при образовании химической связи (в сторону элемента с более высокой электроотрицательностью). Американский физик Малликен предложил определять электроотрицательность как среднеарифметическую величину между потенциалом ионизации и сродством к электрону:
χ = 1/2 (Ei + Ae)
Трудность применения такого способа состоит в том, что значения сродства к электрону известны не для всех элементов.
Л. Полинг рекомендовал другой способ определения электроотрицательности. Он принял электроотрицательность фтора равной 4 (наибольшее значение), для цезия χ принимает наименьшее значение.
Электроотрицательность в количественном отношении представляет собой приближенную величину, поскольку она зависит от того, в состав какого конкретного соединения входит данный атом.
В настоящее время предложено около 20 различных шкал электроотрицательности, среди которых одна из самых распространенных - шкала Олреда - Рохова (см. Приложение).

Химическа связь и условия ее образования

Химическая связь - это взаимодействие, которое связывает отдельные атомы в молекулы, ионы, радикалы, кристаллы. Почему атомы образуют химические связи. На этот вопрос можно ответить, даже не зная ничего о природе этих связей: " Потому что это энергетически выгодно!" Причина образования химических связей – выигрыш в энергии системы связанных атомов по сравнению с изолированными атомами.
Поэтому основным условием образования химической связи является понижением полной энергии многоатомной системы по сравнению с энергией изолированных атомов, т.е. Е(АВ) < Е(А)+Е(В) в случае образования вещества АВ из А и В.
Более точно химическую связь можно определить как взаимодействие атомов, обусловленное перекрыванием их электронных облаков, и уменьшением полной энергии системы.
Ковалентная связь

Ковалентная связь— химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.
Метод валентных связей (МВС)

Метод валентных связей (МВС) иначе называют теорией локализованных электронных пар, поскольку в основе метода лежит предположение, что химическая связь между двумя атомами осуществляется с помощью одной или нескольких электронных пар, которые локализованы преимущественно между ними. В отличие от ММО, в котором простейшая химическая связь может быть как двух-, так и многоцентровой, в МВС она всегда двухэлектронная и обязательно двухцентровая. Число элементарных химических связей, которые способен образовывать атом или ион, равно его валентности. Так же, как и в ММО, в образовании химической связи принимают участие валентные электроны. Волновая функция, описывающая состояние электронов, образующих связь, называется локализованной орбиталью (ЛО).
Способы образования ковалентной связи

Существуют два главных способа образования ковалентной связи *.

1.Электронная пара, образующая связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденных атомах.

2. Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь.
Ионная связь

Ионная связь — это химическая связь, образующаяся за счет электростатического взаимодействия между ионами с зарядами противоположного знака.

Соединения с ионной связью называют ионными. Как примеры веществ с ионным типом связи можно назвать магний сульфид MgS, алюминий хлорид AlCl3, натрий бромид NaBr. Ионная связь также существует в солях кислородсодержащие кислот и в лугах между атомами металлов и атомами кислорода.
Скорость - гомогенная химическая реакция

1.Скорость гомогенных химических реакций зависит от различных факторов и прежде всего - от состава смеси и температуры. Под скоростью реакции принято понимать изменение концентраций реагирующих веществ в единицу времени. При этом совершенно безразлично, концентрация какого из реагирующих веществ рассматривается. Скорость реакции во времени непостоянна даже при одинаковых внешних условиях, так как концентрация исходных веществ уменьшается, а конечных - увеличивается.

2.Скорость гомогенной химической реакции зависит от концентрации реагирующих веществ, температуры и давления. Объясняется это тем, что молекулы газов, двигаясь в различных направлениях с большой скоростью, сталкиваются друг с другом. Чем чаще они сталкиваются, тем быстрее протекает реакция. Под концентрацией понимают массу вещества в единице объема и измеряют ее в кг / ж3 или, чаще, числом молей в 1 мъ.

3.Скорость гомогенной химической реакции изменяется в ходе реакции. Поэтому скорость реакции всегда относится к какому-то моменту времени.

4.Скорость гомогенных химических реакций зависит от многих факторов, и прежде всего от свойств и состава горючих веществ, среды и температуры.
Скорость - гетерогенная химическая реакция

1.Скорость гетерогенных химических реакций существенно зависит от относительного перемещения реагента относительно поверхности твердого тела. Процессы диффузии, лимитирующие скорость гетерогенных химических реакций, развиваются в приповерхностном слое при взаимодействии с потоком газа или жидкости. Толщина этого слоя, в свою очередь, зависит от скорости и характера движения потока, содержащего реагент. Так, при движении потока с малыми скоростями ( ламинарный режим, ReReKpHT) у поверхности твердого тела будет сохраняться неподвижный слой, толщина которого представляет собой функцию скорости потока, а влияние диффузионной передачи реагента из потока к реагирующей твердой поверхности сохраняется.

2.Скорость гетерогенных химических реакций определяется количеством вещества, прореагировавшего на единице поверхности в единицу времени. В общем случае степень химического превращения при гетерогенном каталитическом процессе зависит не только от кинетической характеристики реакции, но и от процессов диффузии реагирующих веществ из потока среды, протекающей между зернами катализатора, к внешней поверхности катализатора и в его поры и обратной диффузии продуктов реакции.

3.Скорость гетерогенной химической реакции при горении металлов зависит от свойств окисной пленки, которая затрудняет доступ кислорода к поверхности металла.

4.Скорость гетерогенной химической реакции при горении металлов зависит от свойств оксидной пленки, которая затрудняет доступ кислорода к поверхности металла.

5.Скорость гетерогенной химической реакции определяется скоростью образования или разрушения адсорбционного комплекса.

6.Скорость гетерогенных химических реакций определяется ко личеством вещества, - прореагировавшего на единице поверхности в единицу времени. В общем случае степень химического превращения при гетерогенном каталитическом процессе зависит не только от кинетической характеристики реакции, но и от процессов диффузии реагирующих веществ из потока среды, протекающей между зернами катализатора, к внешней поверхности катализатора и в его поры и обратной диффузии продуктов реакции.

7.Скорость гетерогенных химических реакций сильно зависит от диффузионных процессов, подводящих новые порции реагента к поверхности и удаляющих с нее продукты реакции
Влияние концентраций веществ на скорость химической реакции

Чтобы вещества прореагировали, необходимо, чтобы их молекулы столкнулись. Вероятность столкновения двух людей на оживленной улице гораздо выше, чем на пустынной. Так и с молекулами. Очевидно, что вероятность столкновения молекул на рисунке слева выше, чем справа. Она прямо пропорциональна количеству молекул реагентов в единице объема, т.е. молярным концентрациям реагентов.

Скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в некоторые степени:
v = k[A]n[B]m, для реакции aA + bB = ...

Числа n, m в выражении закона действующих масс называются порядками реакции по соответствующим веществам. Это экспериментально определяемые величины. Сумма показателей степеней n, m называется общим порядком реакции.

Обратите внимание, что степени при концентрациях А и В в общем случае не равны стехиометрическим коэффициентам в реакции! Они становятся численно равными только в том случае, если реакция протекает именно так, как записывается (такие реакции называются простыми или элементарными и достаточно редки). В большинстве случаев уравнение реакции отражает лишь суммарный результат химического процесса, а не его механизм.
Влияние температуры на скорость химической реакции

В первом приближении влияние температуры на скорость реакций определяется правилом Вант-Гоффа

В интервале температур от 0оС до 100оС при повышении температуры на каждые 10 градусов скорость химической реакции возрастает в 2-4 раза: http://www.chem.msu.su/rus/teaching/kinetics-online/img/ch6_formula1.gif

Скорость химических реакций. Действие катализаторов.

Скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени в единице объема.

Скорость химической реакции зависит:

1.От природы реагирующих веществ;

2.От условий, в которых она протекает (концентрация, температура, наличие катализатора).

Катализатор - вещество, изменяющее скорость химической реакции, но остающееся неизменным после того, как химическая реакция заканчивается.

Влияние катализаторов на скорости реакций называется катализом. Когда реагенты и катализатор находятся в одном агрегатном состоянии, то речь идет о гомогенном катализе. При гетерогенном катализе реагенты и катализатор находятся в разных агрегатных состояниях (обычно, катализатор - в твердом, а реагенты – в жидком или газообразном).
Химическое равновесие

Химическое равновесие — состояние химической системы, в котором протекает одна или несколько химических реакций, причём скорости в каждой паре прямой-обратной реакции равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем
Физико-химическая сущность образования растворов. Гидратная теория Менделеева.

Растворение веществ сопровождается тепловым эффектом: выделе­нием или поглощением теплоты - в зависимости от природы вещества. При растворении в воде, например, гидроксида калия, серной кислоты наблюдается сильное разогревание раствора, т.е. выделение теплоты, а при растворении нитрата аммония - сильное охлаждение раствора, т.е. поглощение теплоты. В первом случае осуществляется экзотермический процесс (∆H < 0), во втором - эндотермический (∆H > 0). Тепло­та растворения ∆H - это количество теплоты, выделяющееся или поглощающееся при растворении 1 моль вещества. Так, для гидрокси­да калия ∆H ° = -55,65 кДж/моль, а для нитрата аммония ∆H ° = +26,48 кДж/моль.
В результате химического взаимодействия растворенного вещества с растворителем образуются соединения, которые называют сольватами (или гидратами, если растворителем является вода). Образование таких соединений роднит растворы с химическими соединениями.
Таким образом, растворение - не только физический, но и химиче­ский процесс. Растворы образуются путем взаимодействия частиц растворенного вещества с частицами растворителя.
Физический процесс- фазовый переход, диффузия молекул растворенного вещества в объеме растворителя.
Химический процесс: образования химической связи между частицами растворенного вещества и растворителя.
Гидратная теория Менделеева.
Гидратная теория Менделеева явилась одной из основ современной теорий растворов. Изучая явления вязкости, теплового расширения и капиллярности жидкостей, Менделеев открыл существование абсолютной температуры кипения. Эти исследования впервые опубликованы в работе “Частичное сцепление некоторых жидких органических соединений и развиты в статье “О расширении жидкостей от нагревания выше температуры кипения” . Менделеев представлял обобщение физики и химии, полагая, что «грани нет между этими явлениями и чисто химическими», «Растворы представляют самый общий случай химического взаимодействия, определяемого сравнительно слабыми средствами». Он предполагал множество гидратов, непрочных и диссоциирующих до динамического равновесия.
В 1884-87 г. Менделеев вернулся к теме растворов, но его химическая гидратная теория в 1887 г. была заслонена физической, осмотической Вант-Гоффа и электролитической Аррениуса. Осмотическое давление равнялось газовому, а отклонение электролитов объяснялось их диссоциацией, на ионы. Но сначала различие между атомами и ионами было неясным, было непонятно, как натрий и хлор могут быть в растворе соли. Только в 1887 г.Нернстрассмотрел взаимодействие осмотической и электрической силы, заряженных частиц - ионов. Но эта теория выполнялась лишь для разбавленных растворов, а теория Менделеева относилась к концентрированным.
Насыщенный, ненасыщенный и пересыщенный растворы

Раствор, находящийся в фазовом равновесии с растворяемым веществом, называется насыщенным

Растворимость вещества, с качественной точки зрения, − это его способность растворяться в данном растворителе при определенных условиях. Количественно растворимость выражают концентрацией насыщенного раствора данного вещества при заданных температуре и давлении.

Насыщенные растворы могут быть как концентрированными, так и разбавленными, в зависимости от значения растворимости веществ.

Многие вещества могут образовывать в определенных условиях пересыщенные растворы, в которых содержание растворенного вещества больше, чем в насыщенном растворе этого же вещества при тех же значениях температуры и давления. Такие растворы неустойчивы и при контакте с растворенным веществом или даже без видимого внешнего воздействия переходят в насыщенные растворы, выделяя избыток растворенного вещества.

Ненасыщенные растворы. Ненасыщенным называют раствор, в котором при данных температуре и давлении возможно дальнейшее растворение уже содержащегося в нем вещества. В опыте с растворением соли в воде ненасыщенный раствор получался при внесении первых порций растворяемого вещества.
Способы выражения концентрации растворов

В зависимости от содержания растворенного вещества растворы бывают разбавленные, концентрированные, насыщенные и перенасыщенные. Количественная характеристика способности вещества растворяться до образования насыщенного раствора называется растворимостью. Растворимость определяется как:

1. количество вещества в граммах, которое необходимо растворить в 100 г растворителя для получения насыщенного раствора (m(г) / 100 (г));

2. количество молей растворенного вещества, которое содержится в 1 л насыщенного раствора (моль / л).

В химической практике применяются растворы с различным содержанием растворенного вещества. Для таких растворов используют следующие способы выражения концентрации растворенного вещества: массовая доля и мольная доля растворенного вещества, молярная и моляльная концентрации, молярная концентрация эквивалента.
Растворимость твердых веществ

Все твердые вещества обладают способностью в той или иной степени растворяться в различных жидкостях. Различие в растворимости твердых веществ может быть очень большим. Существует условное деление веществ по их растворимости в конкретном растворителе при определенной температуре на нерастворимые, малорастворимые и растворимые вещества. Концентрационные границы подобного деления условны и, естественно, лишены какого-либо физико-химического смысла.

К нерастворимым относят вещества, растворимость которых меньше 0,001 моль/л, к малорастворимым − вещества с растворимостью 0,001-0,1 моль/л, а к растворимым − вещества с растворимостью более 0,1 моль/л.

В группу растворимых в воде веществ входят почти все ацетаты, нитраты и тиоцианаты металлов и аммония, хлориды, бромиды и иодиды металлов и аммония, кроме галогенидов свинца(II), меди(I), ртути(I) и серебра(I); сульфаты металлов, за исключением сульфатов щелочноземельных металлов, свинца и серебра.

Группу нерастворимых в воде веществ образуют сульфиды, гидроксиды, сульфиты, хроматы, средние карбонаты и фосфаты металлов, кроме производных щелочных металлов и аммония. Карбонат, фторид и фосфат лития относят к малорастворимым в воде солям.
Растворимость газов

Взаимная растворимость газов неограниченна. Это означает, что при смешивании нескольких газов они образуют однородный газообразный раствор, независимо от количественного соотношения. Такого рода процессы очень часто наблюдаются в повседневной жизни (например, запах быстро распространяется в помещении, куда внесли открытый флакон духов).

Растворимость газа в жидкости зависит от природы газа, растворителя, температуры и при постоянной температуре прямо пропорциональна парциальному давлению p‾B газа B над раствором (закон Генри). Этот закон верен только для небольших давлений (не более 0,1 МПа).
Растворимость жидкостей

При смешивании двух жидкостей можно наблюдать самую различную их взаимную растворимость: от практически полной нерастворимости друг в друге (ртуть - вода) до неограниченной смешиваемости (ацетон - вода).

Если жидкости растворяются друг в друге ограниченно, то происходит их расслаивание с образованием двух жидких фаз, причем фаза с большей плотностью будет находиться внизу

Растворитель, концентрирующий в своей фазе вещество В, называют экстрагентом. Жидкостную экстракцию используют для извлечения и разделения растворенных веществ путем их перевода из одной жидкой фазы в другую при перемешивании обеих фаз.

Этим методом извлекают ценные лекарственные вещества из растительного сырья, иод и бром из природных вод, ведут разделение редких элементов в промышленности и т.д.
Растворы неэлектролитов

Растворы неэлектролитов - бинарные или многокомпонентные молекулярные системы, состав которых может изменяться непрерывным образом (по крайней мере, в некоторых пределах). В отличие от растворов электролитов, в растворах неэлектролитов заряженные частицы в сколько-нибудь заметных концентрациях отсутствуют.

Первый закон Рауля

Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:

Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.
Второй закон Рауля

Второй закон Рауля определяет зависимость температуры кристаллизации и кипения раствора от концентрации растворенного вещества: Повышение температуры кипения и понижение температуры кристаллизации разбавленных идеальных растворов пропорциональны моляльной концентрации растворенного вещества.
Осмос. Осмотическое давление

О́смос— процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества.

Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.
Электролиты. Сильные и слабые.

Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить водные растворы кислот, солей и оснований и некоторые кристаллы (например, иодид серебра, диоксид циркония). Электролиты — проводники второго рода, вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.

Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как HCl, HBr, HI, HNO3, H2SO4 ).

Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты, такие как HF), основания p-, d- и f-элементов.

Электролитическая диссоциация – это полный или частичный распад растворенного вещества на ионы.
Активность ионов. Ионная сила раствора.

Активность (ионов) - эффективная концентрация с учетом электростатического взаимодействия между ионами в растворе. Активность отличается от концентрации на некоторую величину. Отношение активности (а) к концентрации вещества в растворе (с, в г-ион/л) называется коэффициентом активности: γ = a/c.

Ионная сила раствора — мера интенсивности электрического поля, создаваемого ионами в растворе. Полусумма произведений из концентрации всех ионов в растворе на квадрат их заряда. Формула впервые была выведена Льюисом:
Реакции в растворах электролитов

Реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ. Из этого, в частности, следует, что сильные кислоты вытесняют слабые из растворов их солей

Реакции в растворах электролитов идут до конца если в результате взаимодействия веществ происходит образование осадка, выделение газа и образование слабого электролита. При написании ионно-молекулярных уравнений реакций, слабые электролиты, малорастворимые соединения и газы записываются в молекулярной форме, а находящиеся в растворе сильные электролиты – в виде составляющих их ионов.
Гидролиз солей

Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).

Различают обратимый и необратимый гидролиз солей

Под степенью гидролиза понимается отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. Обозначается α (или hгидр);

Константа гидролиза — константа равновесия гидролитической реакции. Так константа гидролиза соли равна отношению произведения равновесных концентраций продуктов реакции гидролиза к равновесной концентрации соли с учетом стехиометрических коэффициентов.


Взаимосвязь константы гидролиза с ионным произведением воды

Ио́нное произведе́ние воды́ — произведение концентраций ионов водорода Н+ и ионов гидроксида OH− в воде или в водных растворах, константа автопротолиза воды.

Практическое значение ионного произведения воды велико, так как оно позволяет при известной кислотности (щёлочности) любого раствора (то есть при известной концентрации [H+] или [OH−]) найти соответственно концентрации [OH−] или [H+].
Степень гидролиза. Константа гидролиза

Константа гидролиза есть константа равновесия процесса гидролиза, и по своему физическому смыслу определяет степень необратимости гидролиза.

Степень гидролиза показывает, какая часть соли, содержащаяся в растворе (СМ), подверглась гидролизу (СМгид)
Химическая термодинамика и ее задачи

Хими́ческая термодина́мика — раздел физической химии, изучающий процессы взаимодействия веществ методами термодинамики.

Основными задачами химической термодинамики являются:

1.Классическая химическая термодинамика, изучающая термодинамическое равновесие.

2.Термохимия, изучающая тепловые эффекты, сопровождающие химические реакции.

3.Теория растворов, моделирующую термодинамические свойства вещества исходя из представлений о молекулярном строении и данных о межмолекулярном взаимодействии.
Первый закон термодинамики. Понятие энтальпии.

Первый закон (первое начало) термодинамики - это, фактически, закон сохранения энергии. Он утверждает, что

энергия изолированной системы постоянна. В неизолированной системе энергия может изменяться за счет: а) совершения работы над окружающей средой; б) теплообмена с окружающей средой.
Теплота образования вещества из элементов. Стандартная энтальпия образования.

1. Стандартные условия: температура 25 оС (298 К) и давление 1 атм.

2. Теплота образования "из самих себя" простых веществ (т.е. чистых элементов) в их наиболее распространенных аллотропных модификациях по определению равна нулю.

ЭНТАЛЬПИЯ - это тепловой эффект реакции, измеренный (или вычисленный) для случая, когда реакция происходит в открытом сосуде (т.е. при неизменном давлении). Обозначается как ΔH.
Закон Гесса

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

Следствия из закона Гесса

1.Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье — Лапласа).

2.Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):

3. Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):

4.Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.
Второй закон термодинамики. Понятие энтропии. Формула Больцмана.

Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.
1.100% энергии не может быть преобразовано в работу

2.Энтропия может вырабатываться, но не может быть уничтожена

Смысл формулы Больцмана

В условиях равновесия энтропия - функция состояния системы, которую можно измерить или вычислить теоретически. Но стоит изолированной системе отклониться от равновесия - возникает свойство энтропии - она только возрастает.
Основные правила определения степени окисления

Степень окисления – это условный заряд, который получает атом в результате полной отдачи (принятия) электронов, исходя из условия, что все связи в соединении ионные.

СО свободных атомов и атомов в составе простых веществ равна нулю

В сложном веществе алгебраическая сумма СО всех атомов

(с учётом индексов) равна нулю, а в сложном ионе – его заряду

Для элементов главных подгрупп (А) ПСХЭ Д. И. Менделеева:

Высшая СО (+) = Nгруппы

Низшая СО (-) = Nгруппы – 8

Для водорода H+1

Для фтора F-1

Для кислорода О-2
Окислительно-восстановительные реакции

Окислительно-восстановительные реакции — это реакции, которые протекают с изменением степеней окисления элементов.

Окисление — это процесс отдачи электронов: Na3 —> Na- + lе. Восстановление — это процесс присоединения электронов: Сl0+ 1е --> Сl-.

Процессы окисления и восстановления протекают всегда одновременно, то есть восстановление одного вещества невозможно без одновременного окисления другого. Поэтому каждая реакция, сопровождающаяся переходом электронов, является единством двух противоположных процессов -окисления и восстановления.

Окислитель — атом или ион, который принимает электроны в процессе восстановления. При этом степень окисления окислителя понижается.

Восстановитель - атом или ион, который отдает электроны в процессе окисления. При этом степень окисления восстановителя повышается.
Метод электронного баланса в доступном изложении

Суть метода электронного баланса заключается в:

1.Подсчете изменения степени окисления для каждого из элементов, входящих в уравнение химической реакции

2.Элементы, степень окисления которых в результате произошедшей реакции не изменяется - не принимаются во внимание

3.Из остальных элементов, степень окисления которых изменилась - составляется баланс, заключающийся в подсчете количества приобретенных или потерянных электронов

4.Для всех элементов, потерявших или получивших электроны (количество которых отличается для каждого элемента) находится наименьшее общее кратное

5.Найденное значение и есть базовые коэффициенты для составления уравнения.
Классификация окислительно-восстановительных реакций

Межмолекулярные окислительно-восстановительные реакции

Окислитель и восстановитель находятся в разных веществах; обмен электронами в этих реакциях происходит между различными атомами или молекулами:

Внутримолекулярные окислительно- восстановительные реакции

Во внутримолекулярных реакциях окислитель и восстановитель находятся в одной и той же молекуле. Внутримолекулярные реакции протекают, как правило, при термическом разложении веществ, содержащих окислитель и восста

Диспропорционирование - окислительно-восстановительная реакция, в которой один элемент одновременно повышает и понижает степень окисления.
Гальванический элемент

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани. Переход химической энергии в электрическую энергию происходит в гальванических элементах.
Основы электрохимических процессов. Причина образования электродного потенциала

Причины возникновения электродного потенциала могут быть различными. Так, например, в случае погружения цинковой пластинки в раствор соли цинка, полярные молекулы воды, действуя своими отрицательными полюсами на положительные ионы металла, переводят их в раствор. При этом электроны остаются на поверхности металла, заряжая ее отрицательно. Гидратированные ионы металла, перешедшие в раствор, притягиваются заряженной поверхностью пластинки и располагаются вблизи нее. В результате образуются два слоя с противоположными зарядами - так называемый двойной электрический слой. Процесс перехода ионов металла в жидкость является процессом обратимым.
Электрохимический ряд напряжений металлов

Электрохимический ряд активности металлов (ряд напряжений, ряд стандартных электродных потенциалов) — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au
Гальванический элемент

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани.
Электролиз

Этот окислительно-восстановительный процесс протекает на электродах при прохождении постоянного электрического тока через растворы или расплавы электролитов.

На отрицательно заряженном электроде - катоде происходит электрохимическое восстановление частиц (атомов, молекул, катионов), а на положительно заряженном электроде - аноде идет электрохимическое окисление частиц (атомов, молекул, анионов).

Таким образом, электролиз - это окислительно-восстановительная реакция, которая протекает под действием и при участии электрического тока. Уравнения электрохимических реакций отражают те процессы, которые без помощи электрического тока протекать не могут.
Коррозия металлов

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

1.Коррозия – это с химической точки зрения процесс окислительно-восстановительный.

2.Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.

3.Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии
Свойства коллоидных систем

Коллоидные системы, коллоиды— дисперсные системы, промежуточные между истинными растворами и грубодисперсными системами — взвесями, в которых дискретные частицы, капли или пузырьки дисперсной фазы, имеющие размер хотя бы в одном из измерений от 1 до 100 нм, распределены в дисперсионной среде, обычно непрерывной, отличающейся от первой по составу или агрегатному состоянию. В свободнодисперсных коллоидных системах (дымы, золи) частицы не выпадают в осадок.

1.Коллоидные частицы не препятствуют прохождению света.

2.В прозрачных коллоидах наблюдается рассеивание светового луча (эффект Тиндаля).

3.Дисперсные частицы не выпадают в осадок — Броуновское движение поддерживает их во взвешенном состоянии, но в отличие от броуновского движения частиц, дисперсные частицы в коллоидных растворах не могут встретиться, что обусловлено одинаковым зарядом частиц.


написать администратору сайта