Закон Харди-Вайнберга. Закон ХардиВайнберга 1 Предпосылки закона ХардиВайнберга
Скачать 23.43 Kb.
|
Закон Харди-Вайнберга 2.1 Предпосылки закона Харди-Вайнберга Популяция является элементарной единицей эволюции, так как она обладает относительной самостоятельностью и ее генофонд может изменяться. Закономерности наследования различны в популяциях разных типов. В популяциях самоопыляющихся растений отбор происходит между чистыми линиями. В популяциях раздельнополых животных и перекрестноопыляемых растений закономерности наследования подчиняются закону Харди-Вайнберга. В научном мире нечасто случается, чтобы разные ученые независимо друг от друга наткнулись на одну и ту же закономерность, но все же таких примеров достаточно, чтобы заставить нас поверить в существование «духа времени». К их числу относится и закон Харди—Вайнберга (известный также как закон генетического равновесия) — одна из основ популяционной генетики. Закон описывает распределение генов в популяции. Представьте себе ген, имеющий два варианта — или, пользуясь научной терминологией, два аллеля. Например, это могут быть гены «низкорослости» и «высокорослости», как в случае менделевского гороха, или наличие или отсутствие предрасположенности к рождению двойни. Харди и Вайнберг показали, что при свободном скрещивании, отсутствии миграции особей и отсутствии мутаций относительная частота индивидуумов с каждым из этих аллелей будет оставаться в популяции постоянной из поколения в поколение. Другими словами, в популяции не будет дрейфа генов. 2.2 Личности ученых Годфри Харолд Харди (1877–1947) – английский математик, родился в Кранли. Сын учителя рисования. Изучал математику в Кембриджском и Оксфордском университете. Пожалуй, самую большую известность Харди принесли совместные работы с Джоном Идензором Литлвудом (1885–1977) и позднее с индийским математиком-самоучкой Cриниваса Рамануджаном (1887–1920), который работал клерком в Мадрасе. Вильгельм Вайнберг (1862–1937) – немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет 3500 младенцам, в том числе по крайней мере 120 парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по наследству. 2.3 Закон Харди-Вайнберга Закон Харди-Вайнберга сформулировали в 1908 г. Независимо друг от друга математик Г. Харди в Англии и врач В. Вайнберг в Германии. Закон Харди-Вайнберга гласит, что процесс наследственной преемственности сам по себе не ведет к изменению частот аллелей и (при случайном скрещивании) частот генотипов по определенному локусу. Более того, при случайном скрещивании равновесные частоты генотипов по данному локусу достигаются за одно поколение, если исходные частоты аллелей одинаковы у обоих полов. Равновесные частоты генотипов задаются произведениями частот соответствующих аллелей. Если имеются только два аллеля, А и а, с частотами p и q, то частоты трех возможных генотипов выражаются уравнением: (р + g)2 = р2 + 2рg + g2 А а АА Аа аа, где буквам во второй строке, обозначающем аллели и генотипы, соответствуют расположенные над ними частоты в первой строке; в котором: р – частота встречаемости аллеля А; g – частота встречаемости аллеля а; g2 – частота встречаемости генотипа аа; р2 – частота встречаемости генотипа АА; рg – частота встречаемости генотипа Аа. [1,с.111-112] Таким образом, если скрещивание случайно, то частоты генотипов связаны с частотами аллелей простым уравнением квадрата суммы. Приведенная выше формула получила название уравнения Харди–Вайнберга. Чтобы понять смысл закона Харди-Вайнберга, можно привести простой пример. Предположим, что данный локус содержит один из двух аллелей, А и а, представленных с одинаковыми для самцов и самок частотами: р для А и q для а. Представим себе, что самцы и самки скрещиваются случайным образом, или, что то же самое, гаметы самцов и самок образуют зиготы, встречаясь случайно. Тогда частота любого генотипа будет равна произведению частот соответствующих аллелей. Вероятность того, что некоторая определенная особь обладает генотипом АА, равна вероятности (р) получить аллель А от матери, умноженной на вероятность (р) получить аллель А от отца, то есть р умножить на р равняется р2 . Совершенно аналогично вероятность того, что определенная особь обладает генотипом аа, равна g2 . Генотип Аа может возникнуть двумя путями: организм получает аллель А от матери и а от отца, или, наоборот, аллель А от отца и аллель а от матери. Вероятность того и другого события равна рg, а значит суммарная вероятность возникновения Аа равна 2рg. 2.4 Основные положения закона Харди-Вайнберга Частоты аллелей не изменяются от поколения к поколению. Это можно легко показать. Частота аллеля А в потомстве в соответствии с таблицей 1 равна сумме частоты генотипа АА и половины частоты генотипа Аа, т.е. равна р2 + рg = р(р + g ) = р (поскольку р + g =1). [1] Равновесные частоты генотипов задаются возведением в квадрат суммы частот аллелей и не изменяются от поколения к поколению. Так как частоты аллелей у потомства остаются такими же (р и g), какими были у родителей, то и частоты генотипов в следующем поколении также остаются неизменными и равными р2, 2рg и g2 . Равновесные частоты генотипов достигаются за одно поколение. При этом в таблице не говорится о частотах генотипов в родительском поколении. Какими бы они не были, частоты генотипов потомков будут р2, 2рg + g2 , если частоты аллелей одинаковы у самцов и самок и равны р и g. [1,с.114] 2.5 Применение закона Харди-Вайнберга Одно из возможных применений закона Харди-Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить – А, а аллель альбинизма – а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей – АА и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10 000. Согласно закону Харди-Вайнберга, частота гомозигот аа равна q2; таким образом, q2 = 0, 0001, откуда q = 0, 01. Из этого следует, что частота нормального аллеля равна 0, 99. Частоты генотипов нормально пигментированных людей составляют р2 = 0, 992 = 0, 98 для генотипа АА и 2рq = 2 х 0,99 х 0,01= 0,02 для генотипа Аа. Группы крови системы АВО могут служить примером локуса с тремя аллелями. Одно интересное следствие из закона Харди-Вайнберга состоит в том, что редкие аллели присутствуют в популяции главным образом в гетерозиготном, а не в гомозиготном состоянии. Рассмотрим приведенный пример с альбинизмом. Частота альбиносов (генотип аа) равна 0, 0001, а частота гетерозигот – 0, 02. Частота рецессивного аллеля а у гетерозигот составляет половину частоты гетерозигот, т.е. 0, 01. Следовательно, в гетерозиготном состоянии находится примерно в 100 раз больше рецессивных аллелей а, чем в гомозиготном. Можно представить себе, что некий введенный в заблуждение диктатор, одержимый евгеническими идеями «улучшения расы», решил элиминировать из популяции альбинизм. Поскольку гетерозиготы неотличимы от гомозигот по доминантному аллелю, его программа должна основываться на уничтожении или стерилизации рецессивных гомозигот. Это приведет лишь к весьма незначительному снижению частоты рецессивного аллеля в популяции, так как большинство аллелей альбинизма содержатся в гетерозиготах, а значит, не проявляются. Поэтому в следующем поколении частота альбинизма будет почти такой же, как в предыдущем. Потребуется вести отбор на протяжении очень многих поколений, чтобы в значительной степени снизить частоту рецессивного аллеля. Обратная ситуация возникает в настоящее время в человеческой популяции в отношении рецессивных летальных заболеваний, которые научились теперь лечить. Примером может служить фенилкетонурия. Частота этого аллеля составляет 0,006. Даже если бы все гомозиготы излечивались и размножались столь же эффективно, как и нормальные люди, частота гена фенилкетонурии возрастала бы очень медленно, а частота гомозигот по этому гену – еще медленнее. Если все индивидуумы, стадающие данным заболеванием, будут излечиваться, то частота гена фенилкетонурии за одно поколение измениться от 0, 06 до 0, 006036 (q1= q + q2 ). Разумеется, если излечиваются не все больные или если у излечившихся число детей в среднем меньше, чем у здоровых, то частота аллеля у больных фенилкетонурией будет увеличиваться еще медленнее. 3.1 Идеальные условия для закона В полной мере закон Харди–Вайнберга применим к «идеальной популяции», которая характеризуется следующими признаками: бесконечно большие размеры; неограниченная панмиксия;( свободное скрещивание разнополых особей с различными генотипами) отсутствие мутаций; отсутствие иммиграции особей из соседних популяций; отсутствие естественного отбора. В природных популяциях ни одно из этих условий не соблюдается, поэтому и закон Харди-Вайнберга носит условный характер. Тем не менее он реально отражает тенденции в характере распределения частот тех или иных аллелей и генотипов. |