Главная страница

Шпоры по физиологии. Законы возбуждения ( силы, времени и градиента ). Классификация раздражителей


Скачать 1.22 Mb.
НазваниеЗаконы возбуждения ( силы, времени и градиента ). Классификация раздражителей
АнкорШпоры по физиологии
Дата27.06.2020
Размер1.22 Mb.
Формат файлаpdf
Имя файлаshpory_obrabotany_do_69_vklyuchitelno.pdf
ТипЗакон
#132937
страница18 из 21
1   ...   13   14   15   16   17   18   19   20   21
Эстрогены стимулируют рост яйцевода, матки, влагалища, разрастание внутреннего слоя матки - эндометрия, способствуют развитию вторичных женских половых признаков и проявления половых рефлексов. Кроме того, эстрогены ускоряют и усиливают сокращение мышц матки, повышают чувствительность матки к гормону нейрогипофиза - окситоцина.
Они стимулируют развитие и рост молочных желез.
Физиологическое значение прогестерона заключается в том, что он обеспечивает нормальное течение беременности. Под его воздействием происходит разрастание слизистой оболочки (эндометрия) матки, это способствует имплантации оплодотворенной яйцеклетки в матке.
Прогестерон создает благоприятные условия для развития вокруг имплантированной яйцеклетки децидуальной ткани, поддерживает нормальное течение беременности за счет торможения сокращений мышц беременной матки и уменьшает чувствительность матки к окситоцину. Кроме того, прогестерон тормозит созревание и овуляцию фолликулов вследствии угнетения создания гормона лютропина аденогипофизом.
К экстрагенитальным эффектам половых гормонов относится, например, анаболическое действие андрогенов, т.е. усиление синтеза белка, катаболического действия прогестерона, влияние андрогенов и гестагенов на рост костей, повышение базальной температуры тела и т.п..
Клетки желтого тела яичников, кроме продукции стероидных гормонов, синтезируют белковый гормон релаксин.
Усиленная секреция релаксина начинается на поздних стадиях беременности.
Значение этого пептидного гормона состоит в ослаблении (релаксации) связки лобкового симфиза с другими тазовыми костями, механизм которого связан с увеличением уровня цАМФ в хондроцитах.
Это приводит к распаду молекулярных компонентов их связи. Кроме того, под влиянием релаксина снижаются тонус матки и ее сократимость, особенно шейки.
Таким образом, этот гормон готовит организм матери к предстоящим родам.
Регуляция образования половых гормонов
Регуляция секреции женских половых
гормонов (прогестерона и эстрадиола) достигается с помощью двух гонадотропных гормонов- фоликулинстимулюючого (ФС
Г) и лютеинизирующего (ЛГ). Под влиянием ФСГ развиваются фолликулы яичников и увеличивается концентрация эстрадиола, а при преобразовании разорванного фолликула (под действием
ПГ) в желтое тело - прогестерона.
Накопленные в крови половые гормоны действуют на гипоталамус или непосредственно на гипофиз по принципу положительной или отрицательной обратной связи. Увеличенная концентрация эстрадиола приводит к повышению уровня
ЛГ (положительная обратная связь), а прогестерон в большом количестве тормозит выделение ФСГ и ЛГ
(отрицательная обратная связь, предотвращает созревание следующего фолликула).
Регуляция секреции мужских половых
гормонов (тестостерона) также запускается каскад: гипоталамус - гонадотропные гормоны - ФСГ и ЛГ, которые заносятся в семенные железы и действуют соответственно на поддерживающие и интерстициальные клетки. Под влиянием
ЛГ выделяется тестостерон, под действием
ФСГ - активизируется сперматогенез.
Накопленный в крови тестостерон тормозит секрецию ЛГ. Параллельно с этим поддерживающие клетки выделяют полипептид ингибин, который подавляет секрецию ФСГ. В регуляции секреции половых гормонов определенно участвует пролактин.
Гормоны плаценты
Плацента осуществляет связь материнского организма с плодом, является одновременно легкими, кишками, печенью, почками и эндокринной железой для плода.
Она имеет три основные структуры: хорионального, базальную мембрану и расположенную между ними паренхиматозную часть состоит из ворсин хориона, стволовой части и микроворсинчастого пространства.
Плацента выполняет много различных функций, в том числе метаболическую
(образование ферментов, участие в расщеплении белков, жиров и углеводов) и гормональную (образует две группы гормонов - белковые и стероидные).
Белковыми гормонами являются хорионический гонадотропин, плацентарный лактогенный гормон
(соматомамотропин) и релаксин. К стероидным гормонам плаценты относятся прогестерон и эстрогены (эстриол). В плаценте выявлены также гипоталамические рилизинг-гормоны.
Хорионический гонадотропин - глюкопротеид, образующийся синцитиальным клетками трофобласта плаценты. Максимальная секреция наблюдается на 7-12-й неделе беременности. Позже продукция гормона снижается в несколько раз. Хорионический гонадотропин переходит в кровь матери.
Транспорт его в организм плода ограничен.
Поэтому концентрация гормона в крови матери в 10-20 раз превышает его содержание в крови плода.
Физиологическая роль хорионического гонадотропина заключается в его лютеинизирующем действии, то есть он влияет подобно лютеинизирующему гормону (лютропину) аденогипофиза.
Хорионический гонадотропин стимулирует рост фолликулов яичников, вызывает овуляцию зрелых фолликулов, способствует образованию желтого тела в яичниках. Кроме того, гормон дает стероидный эффект - стимулирует образование прогестерона в желтом теле яичников.
Отмечаются защитная функция гормона и его способность предотвращать отслойке зародыша. Хорионический гонадотропин имеет также антиалегрическое действие.
Плацентарный лактогенный гормон
(соматомамотропин) - белковый гормон плаценты. Его секреция начинается с 6-й недели беременности. Затем его продукция прогрессивно увеличивается и в конце беременности достигает максимального уровня (до 1 г в сутки). В небольшом количестве гормон проникает через плацентарный барьер в кровь плода.
Физиологическая роль гормона заключается прежде всего в его способности влиять на молочные железы беременной (подобное влияние оказывает пролактин аденогипофиза). Кроме того, плацентарный лактогенный гормон влияет на процессы метаболизма как в материнском организме, так и в организме плода. Метаболическое действие гормона связано с его способностью влиять на
белковый обмен, что проявляется повышением синтеза белка и усилением задержки азота в организме матери.
Одновременно в крови увеличивается содержание свободных жирных кислот, повышается устойчивость организма к гипогликемическому действию инсулина.
Релаксин усиленно секретируется на поздних стадиях беременности. Значение этого пептидного гормона состоит в ослаблении связи лобкового симфиза с другими тазовыми костями. Кроме того, под влиянием релаксина снижаются тонус матки (особенно шейки) и ее сократимость.
Таким образом, этот гормон готовит организм матери до родов.
Стероидные гормоны
плаценты. Прогестерон активно образуется в плаценте на 5-7-й неделе беременности. Со временем его продукция прогрессивно нарастает (в 10 раз). Гормон поступает в больших количествах в кровь матери и плода. Он вызывает ослабление мышц матки, снижает ее сократимость, чувствительность к эстрогенам и окситоцину, способствует накоплению воды и электролитов (особенно натрия) в тканях матки и во всем организме беременной.
Вместе с эстрогенами прогестерон способствует росту и растяжении матки, а также, развитию молочных желез, готовя их к последующей лактации.
Роль гормонов противоположного пола в
регуляции функций организма.
В надпочечниках и значительно меньше в яичниках здоровой женщины постоянно секретируется мужской половой гормон тестостерон (за сутки у женщин образуется
250 мкг, а у мужчин - 7000 мкг). Действие его направлено на стимуляцию роста волос на лобке и в подмышечных впадинах. При гиперпродукции андрогенов проявляются признаки вирилизма - рост волос на теле, облысение висков, нарушение менструального цикла.
В организме мужчины особенно заметную роль играет пролактин, концентрация которого в крови не намного ниже, чем в организме женщины. Хотя сам пролактин значительной мере влияет на мужскую половую систему, он существенно усиливает влияние ЛГ на стероидогенез в интерстициальных клетках, увеличивает количество чувствительных к андрогенам рецепторов в предстательной железе и семенных пузырьках. При гиперпродукции пролактина развивается атрофия половых желез, уменьшается концентрация тестостерона в крови, наступает импотенция.
78.
Роль гормонов
поджелудочной железы в
регуляции углеводного,
жирового и белкового обмена. Регуляция
секреции гормонов поджелудочной
железы. Понятие о состояниях гипо- и
гипергликемии и их причинах.
Это железа смешанной секреци.
Поджелудочная железа, как железа внутренней секреции, продуцирует два основных гормона - инсулин и глюкагон.
Инсулин продуцирует бета-клетками, а глюкагон - альфа-клетками островков
Лангерганса.
Эффекты инсулина Инсулин оказывает влияние на все виды обмена веществ, он способствует анаболическим
/синтез/процессам, усиливает синтез гликогена, жиров, белков, тормозит эффекты гормонов обладающих
катоболическим действием/катехоламины, глюкокортикоиды, глюкогон и др/
Действие
инсулина на
углеводный
обмен
1 увеличение проницаемости клеточных мембран для глюкозы, 2 увеличение транспорта глюкозы из крови в клетки, 3 гипогликемия/как следствие 1 и 2/,
4 активация процессов гликолиза, 5 усиление процессов фосфолирирования,
6 стимуляция синтеза гликогена, 7 торможение распада гликогена, 8 угнетение глюконеогене за Действие
инсулина на
белковый
обмен
1 повышение проницаемости мембран для аминокислот, 2 усиление синтеза иРНК, 3 активация в печени синтеза аминокислот, 4 повышение активности ферментов синтеза белков, 5 торможение активности ферментов расщепляющих белки
Влияние инсулина на жировой обмен
1 стимуляция синтеза свободных жирных кислот из глюкозы, 2 стимуляция синтеза триглицеридов , 3 активация окисления кетоновых тел в печени, 4 подавление распада жира Регуляция инкреции
инсулина
Главным регулятором является глюкоза, активирующая в бета -клетках аденилатциклазы, что в конечном итоги приводит к выбросу инсулина из гранул бета- клеток в кровь. Вегетативная
нервная система - парасимпатическая и ацетилхолин- стимулируют выброс инсулина в кровь, симпатическая и норадреналин- тормозят этот процесс.
При недостатке инсулина в организме развивается сахарный диабет.
Эффекты глюкагона
1.Усиливает гликогенолиз в печени и мышцах,2. Способствует глюконеогенезу.
3.Гипергликемия,4. Активирует липолиз/ лизис/, 5. Подавляет синтез жира. 6.
Увеличивает систез кетоновых тел в печени, 7.Угнетает их окисление,
8.Стимулирует катоболизм/распад/ белков в тканях, прежде всего в печени,
9.Увеличивает синтез мочевины
Увеличение глюкозы в крови тормозит
выделение гормона,
уменьшение-
стимулирует
выброс его в кровь,
Симпатическая нервная система и
катехоламины
стимулируют
выброс глюкогона в кровь, а парасимпатическая-
тормозит.
Гипогликемия – патологическое состояние, которое характеризуется низким уровнем содержания глюкозы в крови
(ниже 3,3 ммоль/л).
Причины: Некорректная дозировка инсулина;Длительный период времени вообще без пищи (более 6-ти часов);Интенсивная физическая нагрузка, повлекшая за собой полное опустошение организма от глюкозы (включая запас гликогена в печени);Снижение количества сахара в крови также может быть связано с употреблением алкоголя.
Гипогликемия может возникнуть из-за неправильной диеты или употребления отдельных медикаментов, плохо сочетающихся с противодиабетическими препаратами (аспирин, варфарин, аллопуринол, пробенецид и др.), усиливающими действие инсулина.Гипергликемия – патологическое состояние, характеризующееся повышенным содержанием сахара (глюкозы) в сыворотке крови.
– легкая гипергликемия (уровень сахара составляет 6–10 ммоль/л);
– гипергликемия средней тяжести (10–16 ммоль/л);
– тяжелая гипергликемия (более 16 ммоль/л).
Главной причиной, обусловливающей возникновение гипергликемии, является низкое количество инсулина (гормона, снижающего концентрацию глюкозы в крови). Или его некорректное взаимодействие с клетками орг-ма для утилизации глюкозы.
Эффекты инсулина разделяют на быстрые
(секунды), медленные (минуты) и отсроченные (часы).
Быстрые эффекты: способствует транспорту глюкозы через клеточные мембраны внутрь клетки (способствуя перемещению молекул переносчика глюкозы на поверхность плазматической мембраны), а также усиливает превращение глюкозы внутри клетки в резервные жиры и гликоген. Инсулин одновременно влияет на
многие биохимические процессы, облегчающие липогенез и тормозящие глюконеогенез.
Медленные эффекты: улучшает проникновение аминокислот в клетки, усиливает синтез клеточных белков и тормозит их распад, обеспечивая положительный азотистый баланс.
Отсроченные эффекты: усиливает транскрипцию генов и трансляцию мРНК, активирует процессы клеточного деления.
В дельта-клетках островков Лангерганса вырабатывается соматостатин, который ингибирует секрецию и инсулина, и глюкагона, уменьшает всасывание глюкозы в желудочно-кишечном тракте, ограничивая таким образом эффекты и инсулина, и глюкагона, а также
панкреогастрин, который стимулирует секрецию соляной кислоты в желудке.
При нарушении функции островков
Лангерганса развивается сахарный диабет.
79.
Участие желез внутренней
секреции
в
приспособительной
деятельности организма. Стресс как
начальный этап адаптации. Стадии и
симптомы стресса по Г. Селье. Понятие о
стресс-реализующих
и
стресс-
лимитирующих системах организма.
Стресс– это неспецифическая реакция организма при действии любых чрезвычайно сильных факторов и проявляющаяся в виде общего адаптационного синдрома(Г. Селье, 1936).
Общий адаптационный синдром, по Селье, включает в себя гипертрофию коркового вещества надпочечников, угнетение вилочковой железы и лимфатических желез, появление язв на слизистой желудка и двенадцатиперстной кишки. Стрессор – любой сильный агент, приводящий к развитию адаптационного синдрома.
Г. Селье различал эустресс (например, сильная радость), в результате которого происходит приспособление организма к новым условиям и повышение его защитных систем, и дистресс (например, слишком сильная нагрузка или длительные отрицательные эмоции), в результате чего сопротивляемость организма снижается.
Фазы (стадии) стресса:
I фаза (аварийная, или фаза тревоги,
страха) развивается в самом начале действия стрессорного фактора. Сильное эмоциональное возбуждение, развивающееся в результате действия стрессора, вызывает активацию высших вегетативных центров ЦНС, активацию симпатической нервной системы и мозгового слоя надпочечников – так называемая симпатоадреналовая реакция, которая приводит к повышению активности сердечно-сосудистой и дыхательной систем, повышению кровотока в сердце и скелетных мышцах и уменьшению кровотока в неработающих мышцах и органах.
Длительность I стадии составляет 6 – 48 часов. Все эти реакции направлены на быструю мобилизацию функций и энергетических запасов для борьбы со стрессорным фактором. Выделяющийся адреналин не только повышает активность симпатической нервной системы, но и повышает тонус ретикулярной формации, в результате чего повышается активность коры больших полушарий, а также удлиняется период возбуждения симпатической нервной системы.
II фаза – фаза устойчивой адаптации, или
резистентности.
Она характеризуется снижением общей возбудимости, формированием функциональных систем, обеспечивающих управление адаптацией к возникшим новым условиям. Снижается интенсивность гормональных сдвигов, постепенно включается ряд систем и органов, первоначально не участвовавших в реакции на стрессор. Приспособительные реакции организма постепенно переключаются на более глубокий тканевой уровень. Уменьшается действие гормонов мозгового вещества надпочечников и увеличивается выделение гормонов коры надпочечников – гормонов адаптации, в результате чего активизируются процессы анаболизма и восполняются растраченные в первой фазе запасы гликогена, жиров и белков.
В этой фазе происходит мобилизация энергетических ресурсов, усиливается синтез структурных и ферментативных белков, повышается активность иммунной системы, происходит избирательное обеспечение пластическими и энергетическими материалами тех органов и систем, которые играют ведущую роль в осуществлении адаптации организма к действию стрессорного фактора.
III фаза – фаза истощения. Она развивается в том случае, если стрессорный фактор действует слишком сильно и слишком долго. В эту стадию характер деятельности эндокринных желез похож на стадию тревоги, но если в I фазе реакция надпочечников ведет к стимуляции организма, то в III – к их истощению. Если не прекратить действие стрессора, развиваются болезнь или смерть. III фаза характеризуется большими энергетическими затратами и преобладанием процессов катаболизма
(дистресс).
Стресс-реализующая система
это симпатическая система, мозговой и корковый слои надпочечников, продуцирующие адреналин, норадреналин, глюкокортикоиды, минералокортикоиды, а также — это аденогипофиз и щитовидная железа, которые секретируют соот- ветственно соматотропный гормон и йодсодержащие гормоны (Т3,Т4)
Адренокортикальный механизм стресса.
Он представляет собой центральное звено стресс-реакции, которое состоит в повышении продукции кортизола, гидро- кортизона и других глюкокортикоидов.
Цепь событий в этом случае такова: неокортекс —> септально-гиппокампово- гипоталамический комплекс —> выделение кортиколиберина гипоталамусом —> выделение АКТГ —> повышение продукции глюкокортикоидов и, частично, минералокортикоидов (альдостерона).
Глюкокортикоиды вызывают, прежде всего, значительное повышение энергетических запасов, в том числе глюкозы (за счет усиления глюконеогенеза) и свободных жирных кислот (за счет активации липолиза). Однако чрезмерное выделение глюкокортикоидов приводит одновременно и к побочным, нежелатель- ным эффектам (это называют платой за адаптацию). Действительно, в этом случае значительно снижается интенсивность иммунных процессов в организме (о чем свидетельствует тимиколимфатическая атрофия), возрастает риск образования язв желудка и развития инфаркта миокарда (за счет спазма сосудов). Повышение продукции альдостерона, которое возникает при усиленном выбросе в кровь
АКТГ, увеличивает реабсорбцию ионов натрия и (пассивно) реабсорбцию воды в почечных канальцах, что в свою очередь приводит к росту артериального давления.
1   ...   13   14   15   16   17   18   19   20   21


написать администратору сайта