Главная страница
Навигация по странице:

  • Нейтральная опасность

  • Защита временем

  • Защита расстоянием

  • Экранирование

  • Радиопротекторы

  • Реферат по экологии. Реферат по Экологии. Защита от , , лучей


    Скачать 85.22 Kb.
    НазваниеЗащита от , , лучей
    АнкорРеферат по экологии
    Дата14.04.2022
    Размер85.22 Kb.
    Формат файлаdocx
    Имя файлаРеферат по Экологии.docx
    ТипРеферат
    #472793

    КГАУ

    Им. И.Т Трубилина

    Кафедра прикладной экологии

    Реферат

    на тему: «Защита от α, β, γ-лучей»






    Выполнил

    студент АХ2032

    Гришин Д.А
    Проверил

    Доктор биологических наук

    Мельченко А.И

    Краснодар 2020г

    Ионизирующие излучения применяют для исследования изношенности деталей машин, выявления дефектов в отливках, поковках и сварных швах, испытания смазочных масел и контроля автоматизированных технологических процессов при ремонте машин.

    При проведении указанных исследований применяют рентгеновские лучи и радиоактивные изотопы.

    Так, например, изношенность деталей двигателей внутреннего сгорания исследуют методом радиоактивных индикаторов (меченых атомов). В данном случае радиоактивные изотопы предварительно вводят в трущиеся поверхности деталей. По мере износа этих деталей частицы металла, содержащие радиоактивную примесь, попадают в смазку, которая становится радиоактивной. По интенсивности излучения смазки определяют степень и скорость износа деталей.

    К ионизирующим излучениям относятся рентгеновское, альфа-, бета-, гамма-излучения и др.

    Альфа-излучение представляет собой поток ядер атомов гелия. Проникающая способность альфа-частиц, т.е. способность проходить через слой какого-либо вещества определенной толщины, небольшая. Поэтому внешнее воздействие альфа-частиц на живой организм не является опасным. Однако альфа-частицы обладают высокой ионизирующей способностью, и их попадание внутрь организма через дыхательные пути, желудочно-кишечный тракт или раны вызывает серьезные заболевания.

    Бета-излучение состоит из потока электронов. Они имеют значительно большую проникающую, но меньшую ионизирующую способность по сравнению с альфа-частицами. Именно высокая проникающая способность электронов является опасным фактором при облучении этими частицами.

    Гамма-лучи представляют собой электромагнитное излучение с очень короткой длиной волны. Они не только глубоко проникают в организм, но и оказывают сильное ионизирующее воздействие. Вследствие этого гамма-излучение чрезвычайно опасно для человека.

    Ионизация тканей организма приводит к их разрушению в связи с расщеплением воды (ее содержание в живой ткани составляет 72%) и вступлением образовавшихся веществ в химическую реакцию с белковыми соединениями.

    Чувствительность различных организмов к ионизирующему излучению неодинакова. Так, экспозиционная доза рентгеновского излучения, при которой гибнет половина организмов, подвергнувшихся облучению, равна для людей 500Р. Смертельной для человека является доза гамма- или рентгеновских лучей, составляющая 500...600Р.

    Облучение может вызвать выпадение волос, ломкость ногтей, нарушение деятельности желудочно-кишечного тракта, появление катаракты, изменения в наследственных функциях, острую или хроническую лучевую болезнь.

    В течение жизни человек подвергается воздействию радиоактивного излучения, исходящего от почвы и сооружений, но оно, как правило, не вызывает существенных изменений в организме.

    Нормы радиационной безопасности
    Мощность экспозиционной дозы естественного радиационного фона составляет 3...25мкР/ч в зависимости от местных условий, а среднегодовой естественный фон колеблется в пределах от 70 до 150мР. В горных районах, где радиоактивные вещества встречаются

    в природных условиях, естественный фон выше, чем в равнинных.

    При выполнении расчетов полагают, что мощность дозы естественного радиационного фона равна 10мкР/ч, или 240мкР/сут.

    В соответствии с требованием обеспечения безопасных условий при работе с радиоактивными веществами и ионизирующими излучениями Нормами радиационной безопасности НРБ-76/89 установлены предельно допустимые дозы (ПДД) ионизирующих излучений и среднегодовые допустимые концентрации (СДК) радиоактивных веществ в воде и в воздухе.

    С учетом последствий влияния ионизирующих излучений на организм человека выделены три категории облучаемых лиц:

    • категория А - персонал (лица, которые непосредственно работают с источниками ионизирующих излучений или по роду своей работы могут подвергнуться облучению);

    • категория Б - отдельные лица, проживающие на территории, где дозы излучения могут превысить установленные предельные значения;

    • категория В - население в целом.

    Предельно допустимые дозы при внешнем и внутреннем облучении установлены для четырех групп критических органов или тканей:

    • I группа - все тело, хрусталик, красный костный мозг;

    • II группа - мышцы, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталик глаза и др.

    • III группа - костная ткань, щитовидная железа и кожный покров (кроме кожи, костей, предплечий, лодыжек и стоп);

    • IV группа - кости, предплечья, лодыжки и стопы.

    Предельно допустимые дозы для персонала и отдельных представителей населения регламентированы НРБ-76/87. Согласно этим нормам предельно допустимая мощность эквивалентной дозы ионизирующего излучения для всего организма составляет 5бэр в год, или 100мбэр в неделю. Бэр представляет собой биологический эквивалент рентгена, равный количеству энергии любого вида излучения, которое, будучи поглощено в биологической ткани единичной массы, вызывает такой же биологический эффект, что и доза гамма- или рентгеновских лучей, равная одному рентгену.

    Предельная экспозиционная доза ионизирующего излучения для всего организма при работе непосредственно с радиоактивными источниками, определяется по формуле
    где D - доза, бэр; N - возраст, годы; 18 лет - минимальный возраст персонала

    Защита от α, β, γ-лучей

    Защита от ионизирующих излучений состоит в как можно большем снижении их интенсивности. Меры по обеспечению защиты от радиации включают в себя, в частности, выполнение санитарно-гигиенических требований к помещениям, где находятся источники излучения, и соблюдение личной гигиены.
    Толщина экрана, необходимая для полного поглощения потока альфа-излучения, превосходит длину пробега альфа-частиц в материале, из которого он изготовлен. Вместо применения защитного экрана практикуется удаление облучаемого объекта от источника альфа-излучения. Защита от бета-излучения также связана с ослаблением его воздействия при помощи экрана.
    С помощью рис.5.3 можно проиллюстрировать характер изменения интенсивности гамма-излучения при его распространении в веществе.
    Из графика следует, что кривая интенсивности у-излучения не пересекается с осью абсцисс. Это означает, что гамма-излучение не
    может быть полностью поглощено, какой бы ни была толщина слоя вещества или экрана. Можно лишь в определенной степени ослабить его интенсивность. Так, например, при толщине экрана d0.5 интенсивность излучения ослабляется в 2 раза, а при толщине d0.1 - в 10 раз.
    Экраны, защищающие от воздействия у-излучения, изготавливают из свинца, вольфрама, нержавеющей стали, медных сплавов, чугуна, бетона и других материалов. Лучшими для этой цели считают вещества, имеющие большую атомную массу и значительную плотность.
    Защитные экраны от гамма-лучей и нейтронов представляют собой сочетания материалов, имеющих большую плотность, с водой (например, свинец-вода, железо-вода или железо-графит).
    Для смотровых иллюминаторов применяют прозрачные материалы, например свинцовые стекла или системы на основе жидкого наполнителя в стекле. Наполнителями в них могут служить бромистый и хлористый цинк.
    Приемлемый уровень безопасности при работе с источником гамма-излучения достижим при определенных сочетаниях продолжительности
    работы, расстояния до источника и его активности, которая зависит от массы вещества и убывает со временем.

    Гамма-излучение обладает очень высокой проникающей способностью, и теоретически никакая преграда не способна защитить от него полностью. Мы постоянно подвергаемся гамма-облучению, оно приходит к нам сквозь толщу атмосферы из космоса, пробивается сквозь слой грунта и стены домов. Обратная сторона такой все проникаемости — относительно слабое разрушающее действие: из большого количества фотонов лишь малая часть передаст свою энергию организму. Мягкое (низкоэнергетическое) гамма-излучение (и рентгеновское) в основном взаимодействует с веществом, выбивая из него электроны за счет фотоэффекта, жесткое — рассеивается на электронах, при этом фотон не поглощается и сохраняет заметную часть своей энергии, так что вероятность разрушения молекул в таком процессе значительно меньше.
    Бета-излучение по своему воздействию близко к гамма-излучению — оно тоже выбивает электроны из атомов. Но при внешнем облучении оно полностью поглощается кожей и ближайшими к коже тканями, не доходя до внутренних органов. Тем не менее это приводит к тому, что поток быстрых электронов передает облученным тканям значительную энергию, что может привести к лучевым ожогам или спровоцировать, например, катаракту.

    Альфа-излучение несет значительную энергию и большой импульс, что позволяет ему выбивать электроны из атомов и даже сами атомы из молекул. Поэтому причиненные им «разрушения» значительно больше — считается, что, передав телу 1 Дж энергии, альфа-излучение нанесет такой же ущерб, как 20 Дж в случае гамма- или бета-излучения. К счастью, проникающая способность альфа-частиц чрезвычайно мала: они поглощаются самым верхним слоем кожи.
    Нейтральная опасность

    Но первое место в рейтинге опасности, несомненно, занимают быстрые нейтроны. Нейтрон не имеет электрического заряда и поэтому взаимодействует не с электронами, а с ядрами — только при «прямом попадании». Поток быстрых нейтронов может пройти через слой вещества в среднем от 2 до 10 см без взаимодействия с ним. Причем в случае тяжелых элементов, столкнувшись с ядром, нейтрон лишь отклоняется в сторону, почти не теряя энергии. А при столкновении с ядром водорода (протоном) нейтрон передает ему примерно половину своей энергии, выбивая протон с его места. Именно этот быстрый протон (или, в меньшей степени, ядро другого легкого элемента) и вызывает ионизацию в веществе, действуя подобно альфа-излучению. В результате нейтронное излучение, подобно гамма-квантам, легко проникает внутрь организма, но там почти полностью поглощается, создавая быстрые протоны, вызывающие большие разрушения. Кроме того, нейтроны — это то самое излучение, которое вызывает наведенную радиоактивность в облучаемых веществах, то есть превращает стабильные изотопы в радиоактивные. Это крайне неприятный эффект: скажем, с транспортных средств после пребывания в очаге радиационной аварии альфа-, бета- и гамма-активную пыль можно смыть, а вот от нейтронной активации избавиться невозможно — излучает уже сам корпус (на этом, кстати, и был основан поражающий эффект нейтронной бомбы, активировавшей броню танков)

    При измерении и оценке радиации используется такое количество различных понятий и единиц, что обычному человеку немудрено и запутаться.
    Экспозиционная доза пропорциональна количеству ионов, которые создает гамма- и рентгеновское излучения в единице массы воздуха. Ее принято измерять в рентгенах (Р).
    Поглощенная доза показывает количество энергии излучения, поглощенное единицей массы вещества. Ранее ее измеряли в радах (рад), а сейчас — в греях (Гр).
    Эквивалентная доза дополнительно учитывает разницу в разрушительной способности разных типов радиации. Ранее её измеряли в «биологических эквивалентах рада» — бэрах (бэр), а сейчас — в зивертах (Зв).
    Эффективная доза учитывает ещё и различную чувствительность разных органов к радиации: например, облучать руку куда менее опасно, чем спину или грудь. Ранее измерялась в тех же бэрах, сейчас — в зивертах.
    Перевод одних единиц измерения в другие не всегда корректен, но в среднем принято считать, что экспозиционная доза гамма-излучения в 1 Р принесёт организму такой же вред, как эквивалентная доза 1/114 Зв. Перевод рад в греи и бэров в зиверты очень прост: 1 Гр = 100 рад, 1 Зв = 100 бэр. Для перевода поглощённой дозы в эквивалентную используют т.н. «коэффициент качества излучения», равный 1 для гамма- и бета-излучения, 20 для альфа-излучения и 10 для быстрых нейтронов. Например, 1 Гр быстрых нейтронов = 10 Зв = 1000 бэр.
    Природная мощность эквивалентной дозы (МЭД) внешнего облучения обычно составляет 0,06 — 0,10 мкЗв/ч, но в некоторых местах может быть и менее 0,02 мкЗв/ч или более 0,30 мкЗв/ч. Уровень более 1,2 мкЗв/ч в России официально считается опасным, хотя в салоне самолёта во время перелёта МЭД может многократно превышать это значение. А экипаж МКС подвергается облучению с мощностью примерно 40 мкЗв/ч. Человеческий организм более чем на три четверти состоит из воды, так что основное действие ионизирующего излучения — радиолиз (разложение воды). Образующиеся свободные радикалы вызывают лавинный каскад патологических реакций с возникновением вторичных «осколков». Кроме того, излучение повреждает химические связи в молекулах нуклеиновых кислот, вызывая дезинтеграцию и деполимеризацию ДНК и РНК. Инактивируются важнейшие ферменты, имеющие в своем составе сульфгидрильную группу — SH (аденозинтрифосфатаза, сукциноксидаза, гексокиназа, карбоксилаза, холинэстераза). При этом нарушаются процессы биосинтеза и энергетического обмена, из разрушенных органелл в цитоплазму высвобождаются протеолитические ферменты, начинается самопереваривание. В группе риска в первую очередь оказываются половые клетки, предшественники форменных элементов крови, клетки желудочно-кишечного тракта и лимфоциты, а вот нейроны и мышечные клетки к ионизирующему излучению довольно устойчивы.

    Препараты, способные защитить от последствий облучения, стали активно разрабатываться в середине XX века. Более-менее эффективными и пригодными для массового использования оказались лишь некоторые аминотиолы, такие как цистамин, цистеамин, аминоэтилизотиуроний.

    По сути они являются донорами — SH групп, подставляя их под удар вместо «родных».

    ИСТОЧНИКИ ИЗЛУЧЕНИЙ

    Альфа-излучение

    Активно развивающаяся цивилизация и окружающую среду загрязняет активно. Радиоактивному загрязнению окружающего нас пространства способствуют объекты урановой промышленности, ядерные реакторы, предприятия радиохимической промышленности, захоронения радиоактивных отходов.

    Также альфа и другие типы излучений возможны при использовании радионуклидов на объектах народного хозяйства. Космические исследования и сети радиоизотопных лабораторий тоже добавляют излучений в общую их массу.

    Бета-излучение

    В природе не встречается источников бета-излучения в целом: электроны излучает солнце, излучающее все виды частиц, бета-излучение содержится в естественном радиоактивном поле Земли, так же в некоторых месторождениях руды могут содержаться примеси частиц, излучающих бета-частицы.

    Среди химических элементов источниками бета-излучения являются следующие элементы:

    • прометий,

    • иттрий,

    • стронций,

    • празеодим,

    • церий

    • и криптон.

    Источники бета-излучения используются в медицине при рентгеновском просвечивании тонкостенных сосудов, при лечении внутренних органов и участков кожи; на основе этого излучения была создана лучевая терапия; широко используются в химии; в технике при процессе ремонта машин для контроля автоматизированных процессов.

    Гамма-Излучение

    Источниками гамма-излучения являются Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц.

    Гамма-излучение,образующееся при прохождении быстрых заряженных частиц через вещество,вызывается их торможением в кулоновском поле атомных ядер вещества.

    В межзвездном пространстве гамма-излучение может возникать в результате соударений квантов света с электронами и видимый свет превращается в более жесткое гамма-излучение

    Меры защиты разобранные на лекции:

    . Необходимо обязательное выполнение санитарных требований к помещениям, где содержатся источники излучения, соблюдение личной гигиены при организации работы с ними. Во время работы так же требуется проводить постоянный радиационный контроль.

    Способами защиты от излучения являются:

    • расстояние;

    • экранирование плексигласом, стеклом, тонкими слоями алюминия, противогазами;

    • время;

    • химическая защита путем введения в организм радиопротекторов — специальных химических веществ.



    Защита временем включает в себя максимальное снижение времени при нахождении рядом с источниками излучения. Чем меньше времени проводится, тем меньший вред здоровью излучение наносит. Во время ликвидационной операции на Чернобыльской АЭС ликвидаторам давалось буквально несколько минут на работу в пораженной радиацией зоне, в противном случае долгое нахождение там могло привести к развитию лучевой болезни.

    Защита расстоянием требует при нахождении предмета, излучающего бета-частицы, как можно скорее удалиться на безопасное расстояние от него.


    Экранирование плексигласом или стеклом при работе с источниками бета-излучения так же строго необходимо. Для защиты дыхательных путей требуется наличие противогаза, обычным респиратором в связи с проникающей способностью частиц здесь не обойтись

    Радиопротекторы используются для того, чтобы ослабить радиационное влияние на организм. Вводятся внутривенно, либо используются как пищевые добавки до начала работы с источниками бета-излучения, действуют только при кратковременном облучении. Радиопротекторы могут быть опасны сами по себе — они вызывают в организме биохимические и физиологические сдвиги.

    КАК ОБНАРУЖИТЬ РАДИАЦИЮ

    Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.

    К основным относятся: 1) ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствие – изменение ее электропроводности; 2) сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей; 3) химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем; 4) фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц; 5) метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.

    Таблица Зависимости Эффектов от дозы однократного облучения

    Доза

    Эффект

    Грей

    Рад

    50

    5000

    Пороговая доза поражения центральной нервной системы («электронная смерть»)

    6,0

    600

    Минимальная абсолютно-смертельная доза

    4,0

    400

    Средне-смертельная доза (доза 50% выживания)

    1,5

    150

    Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад – 1ст., 200-400 рад – 2 ст., 400-600 рад – 3 ст., свыше 600 рад – 4ст.)

    1,0

    100

    Порог клинических эффектов

    0,1

    10

    Уровень удвоения генных мутаций










    Необходимо учитывать, что радиоактивное облучение, полученное в течение первых четырёх суток, принято называть однократными, а за большое время – многократными. Доза радиации, не приводящая к снижению работоспособности (боеспособности) личного состава формирований (личного состава армии во время войны): однократная (в течение первых четырёх суток) – 50 рад; многократная: в течение первых 10-30 суток – 100 рад; в течение трёх месяцев – 200 рад; в течение года – 300 рад. Не путать, речь идёт о потере работоспособности, хотя последствия облучения сохраняются

    РАДИАЦИОННЫЙ КОНТРОЛЬ

    Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.

    Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая не превышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения.

    Радиационному контролю подлежат: 1) радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов; 2) радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде; 3) радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения; 4) уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.

    Основными контролируемыми параметрами являются: годовая эффективная и эквивалентная дозы; поступление радионуклидов в организм и их содержание в организме для оценки годового поступления; объёмная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалов; радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей.

    Поэтому, администрация организации может вводить дополнительные, более жесткие числовые значения контролируемых параметров - административные уровни.

    Причём государственный надзор за выполнением Норм радиационной безопасности осуществляют органы Госсанэпиднадзора и другие органы, уполномоченные Правительством Российской Федерации в соответствии с действующими нормативными актами.

    Контроль за соблюдением Норм в организациях, независимо от форм собственности, возлагается на администрацию этой организации. Контроль за облучением населения возлагается на органы исполнительной власти субъектов Российской Федерации.

    Контроль за медицинским облучением пациентов возлагается на администрацию органов и учреждений здравоохранения.

    Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

    От альфа-лучей можно защититься путём:

    - увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;

    - использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;

    - исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

    В качестве защиты от бета-излучения используют:

    - ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;

    - методы и способы, исключающие попадание источников бета-излучения внутрь организма.

    Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

    - увеличение расстояния до источника излучения;

    - сокращение времени пребывания в опасной зоне;

    - экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);

    - использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;

    - использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;

    - дозиметрический контроль внешней среды и продуктов питания.

    Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации:

    - укрыться в жилых домах. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз;

    - принять меры защиты от проникновения в квартиру (дом) радиоактивных веществ с воздухом. Закрыть форточки, уплотнить рамы и дверные проёмы;

    - сделать запас питьевой воды. Набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны;

    - провести экстренную йодную профилактику (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается стопроцентная степень защиты от накопления радиоактивного йода в щитовидной железе. Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток: а) детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси; б) детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды. Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.

    Начать готовиться к возможной эвакуации : подготовить документы и деньги, предметы, первой необходимости, упаковать лекарства, минимум белья и одежды. Собрать запас консервированных продуктов. Все вещи следует упаковать в полиэтиленовые мешки. Постараться выполнить следующие правила: 1) принимать консервированные продукты; 2) не пить воду из открытых источников; 3) избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, не купаться; 4) входя в помещение с улицы, снимать обувь и верхнюю одежду.

    В случае передвижения по открытой местности используйте подручные средства защиты:

    - органов дыхания: прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды;

    - кожи и волосяного покрова: прикрыть любыми предметами одежды, головными уборами, косынками, накидками, перчатками.

    ЗАЩИТА НАСЕЛЕНИЯ

    1. Коллективные средства защиты: убежища, быстровозводимые убежища (БВУ), противорадиационные укрытия (ПРУ), простейшие укрытия (ПУ);

    2. Индивидуальные средства защиты органов дыхания: фильтрующие противогазы, изолирующие противогазы, фильтрующие респираторы, изолирующие респираторы, самоспасатели, шланговые, автономные, патроны к противогазам;

    3. Индивидуальные средства защиты кожи: фильтрующие, изолирующие;

    4. Приборы дозиметрической разведки;

    5. Приборы химической разведки;

    6. Приборы - определители вредных примесей в воздухе;

    7. Фотографии.

    Заключение

    И так как только были открыты ионизирующие излучения и их вредное воздействие на живые организмы, появилась необходимость контролировать облучение этими излучениями человека. Каждый человек должен знать об опасности радиации и уметь защищаться от нее.

    Радиация по своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

    В медицине одним из самых распространенных приборов является рентгеновский аппарат, также получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия, хотя и облучение направлено на исцеление больного, но нередко дозы оказываются неоправданно высокими, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.

    Огромный ущерб приносят и аварии на объектах, где присутствует радиация, яркий этому пример Чернобыльская АЭС

    Таким образом необходимо всем нам задуматься, чтобы не получилось так, что упущенное сегодня может оказаться совершенно непоправимым завтра.

    Список используемой литературы

    1)Куликов Олег Николаевич,

    Ролин Евгений Иванович

    Охрана труда при производстве сварочных работ

    Учебное пособие

    2004

    2) Смирнов А.Т. Основы безопасности жизнедеятельности. Учебник для 10, 11 классов СШ. – М.: Просвещение, 2002.

    3)Шилов И.А Экология:учеб.для биол.и мед.спец.вузов.-М Высш.шк 19974)

    4)Основы экологии:В.И Кармилицин


    написать администратору сайта