Главная страница
Навигация по странице:

  • Современные объяснения причин землетрясений

  • 1 б а л л.

  • Механизм землетрясений и их классификация

  • Перспективы предсказаний

  • Землятрясения. Землетрясения


    Скачать 27.87 Kb.
    НазваниеЗемлетрясения
    АнкорЗемлятрясения
    Дата04.11.2020
    Размер27.87 Kb.
    Формат файлаdocx
    Имя файлаЗемлятрясения.docx
    ТипРеферат
    #148053

    НИТУ МИСиС

    Реферат на тему «Землетрясения»

    Выполнил:

    Пестриков О.В.

    НТС-15

    2015 г.

    Введение

    В недрах нашей планеты непрерывно происходят внутренние процессы, изменяющие лик Земли. Чаще всего эти изменения медленные, постепенные. Точные измерения показывают, что одни участки земной поверхности поднимаются, другие опускаются.

    Землетрясения – важная составная часть окружающей нас среды, и ни один район земного шара нельзя считать полностью от них избавленным. Сейсмологи работают во всех развитых, а также во многих развивающихся странах. Они интересуются, почему и как происходят землетрясения. Изучая волны, проходящие через Землю при землетрясениях, ученые воссоздают существенные детали ее внутреннего строения. Разработанные для такого изучения методы оказались полезными также при поисках нефти и других полезных ископаемых. В странах, где землетрясения происходят часто, возникают важные социальные и экономические проблемы, специальные задачи должны решать архитекторы и инженеры. Таким образом, сейсмология служит как практической деятельности человека, так и познанию фундаментальных законов природы.

    Сейсмология – это часть более широкой науки - геофизики, возникшей как пересечение и связующее звено двух более старых наук – геологии и физики. Геология в широком смысле слова занимается всесторонним изучением Земли, однако в настоящее время ее предметом, как правило, считают преимущественно описательное изучение происхождения и свойств горных пород и содержащихся в них ископаемых, а также преобразований земной поверхности под воздействием высоких температур, давления, электричества и других сил. В сферу действия геофизики попадают, таким образом, разделы геологии, связанные с физическими измерениями и расчетами, и разделы физики, рассматривающие Землю и ее атмосферу.

    Современные объяснения причин землетрясений

    Ценою усилий нескольких поколений исследователей специалисты теперь неплохо представляют, что происходит при землетрясении и как оно проявляется на поверхности Земли. Но ведь поверхностные явления – это результат того, что происходит в недрах. И основное внимание специалистов теперь сосредоточено на познании глубинных процессов в недрах Земли, процессов, приводящих к землетрясению, его сопровождающих и за ним следующих.

    Теория землетрясений как геофизического процесса еще только разрабатывается. Хотя в исследованиях такого рода ныне широко используется физическое и математическое моделирование, познание различных природных феноменов, связанных с землетрясениями, в значительной мере основывается на наблюдениях на земной поверхности.

    Научная геология (ее становление относится к Х VIII в.) сделала правильные выводы о том, что сотрясаются главным образом молодые участки земной коры. Во второй половине Х I Х в. уже была выбрана общая теория, согласно которой земная кора была подразделена на древние стабильные щиты и молодые, подвижные горные сооружения. Выяснилось, что молодые горные системы – Альпы, Пиренеи, Карпаты, Гималаи, Анды – подвержены сильным землетрясением, в то время как древние щиты (к ним относится Чешский массив) являются областями где сильные землетрясения отсутствуют.

    К числу наиболее употребительных сейсмологический терминов, связанных с понятием «землетрясение», можно отнести следующие: очаг, гипоцентр, эпицентр, магнитуда, балл.

    Под очагом тектонического землетрясения понимается замкнутый объем земного вещества, в котором достаточно короткого, до 1-3 минут, времени произошли разрушения. Как правило, в области очага происходит смещение (подвижка) одной части объема относительно другой. Место, в котором начинается подвижка, именуется гипоцентром.

    Именно с этой точки начинается процесс генерации сейсмических волн, которые могут привести к разрушениям за пределами очага. Проекция гипоцентра по вертикали на земную поверхность получила название эпицентра.

    Понятие балла характеризует интенсивность сотрясения в точке наблюдения. В нашей стране с 1964 года используется 12-бальная шкала MSK – 64. Следует отметить, что «не сейсмологи» в баллах зачастую характеризуют саму силу землетрясения в очаге. Это неверно, однако в газетных сообщениях встречается регулярно. Как правило, это касается шкалы Рихтера, в которой используется безразмерная величина магнитуды М землетрясения, пропорциональная логарифму выделенной в очаге энергии. Путаница возникла в связи с двумя обстоятельствами: 1) магнитуды известных до сих пор землетрясения не превышает 9 единиц (в каталогах есть только М (макс.) равна 8,9), то есть магнитуда численно близка к значениям баллов сотрясений; 2) мы привыкли к тому, что любой параметр имеет размерность (метры, килограммы, градусы), а ведь логарифмы любых параметров всегда безразмерны. Поэтому, если в печати появляется сообщения типа «землетрясение имело 7 баллов по шкале Рихтера», то в действительности это означает, что магнитуда землетрясения М=7. А ощущаться в разных пунктах оно может силой 10 баллов, 8 баллов,5 баллов-

    это зависит от расстояния до очага. Таким образом если бальность зависит от расстояния до очага, то магнитуда – не зависит.

    Шкала MSK -64 составлена применительно к зданиям и сооружениям, не имеющем сейсмостойкого усиления конструкций. Описания первых четырех баллов этой шкалы будут приведены ниже без изменений, а начиная с пятого, когда возможны повреждения строений, будут описаны основные отличительные признаки землетрясений и вероятное их воздействие на здания современной застройки на Камчатке. При описании каждого балла в скобках указана частота повторяемости землетрясений данной силы для Петропавловска- Камчатского.

    1 б а л л. Неощутимое землетрясение. Интенсивность колебаний лежит ниже предела чувствительности, сотрясения почвы обнаруживаются и регистрируются только сейсмографами.

    2 б а л л а. Слабое землетрясение. Колебания ощущаются только отдельными людьми, находящимися внутри помещения, особенно на верхних этажах.

    3 б а л л а. Слабое землетрясение. Ощущается не многими людьми, находящимися внутри помещений, под открытым небом – только в благоприятных условиях. Колебания схожи с сотрясениями, создаваемыми проезжающим легким грузовиком. Внимательные наблюдатели замечают небольшое раскачивание висячих предметов, несколько более сильное на верхних этажах.

    4 б а л л а. Заметное сотрясение. Землетрясение ощущается внутри здания многими людьми, под открытым небом – немногими. Кое-где просыпаются, но никто не пугается. Колебания схожи с сотрясением, создаваемым проезжающим тяжелым грузовиком. Дребезжание около дверей, посуды. Скрип стен, полов. Дрожание мебели. Висячие предметы слегка раскачиваются. Жидкость в открытых сосудах слегка колеблется. В стоящих на месте автомашинах толчок заметен.

    5 б а л л о в (15-25 раз в 100 лет). Просыпаются почти все спящие, колеблется и частично расплескивается вода в сосудах, могут опрокинуться легкие предметы, разбиться посуда. Здания не повреждаются.

    6 б а л л о в (10-15 раз в 100 лет). Многие люди пугаются, колебания мешают ходить. Здания шатаются, сильно раскачиваются подвесные светильники. Падает и бьется посуда, предметы падают с полок. Может сдвигаться мебель. Осыпание побелки, тонкие трещины в штукатурке.

    7 б а л л о в (4-6 раз в 100 лет). Сильный испуг, колебания мешают стоять на ногах. Двигается и может упасть мебель. В любых зданиях – трещины в перегородках. Трещины в штукатурке, тонкие трещины в стенах, трещины в швах между блоками и в перегородках, выпадение заделов швов, нередко тонкие трещины в блоках.

    8 б а л л о в (1-3 раза в 100 лет). Сбивает с ног. Трещины в грунте на склонах.. В любых зданиях – повреждение, иногда частичное разрушение перегородок. Трещины в несущих стенах, обвалы штукатурки, смещение блоков, трещины в блоках.

    9 б а л л о в (приблизительно 1 раз в 300 лет). Повсеместно трещины в грунте. На склонах – оползни грунта. В любых зданиях – обрушение перегородок. Разрушение части несущих стен, повреждение и смещение некоторых панелей.

    Механизм землетрясений и их классификация

    Горообразовательные, вулканические и сейсмические процессы географически тяготеют друг к другу. Однако во времени они происходят, как правило, неодновременно и всегда с разной продолжительностью. Кроме того, есть районы с резко выраженной только сейсмической активностью. Например, многие Средней Азии отличаются высокой сейсмичностью, но не имеют вулканов. На Камчатке и в Чили вулканы и землетрясения проявляются на одной и той же территории, но редко одновременно.

    Многие из сейсмологов, говоря о механизме землетрясений, придерживаются теории упругого высвобождения или упругой отдачи. Они связывают возникновение землетрясений с внезапным высвобождением энергии упругой деформации. В результате длительных движений в районе разлома и накопления в связи с этим напряжений, достигающих предельных для прочности пород величины, происходит разрыв или срез этих пород с внезапным быстрым смещением – упругой отдачей, вследствие чего и возникают сейсмические волны. Таким образом, очень медленные и длительные тектонические движения при землетрясении переходят в сейсмические движения, отличающиеся большой скоростью, что происходит в результате быстрой «разрядки», накопленной упругой энергии. Это разрядка происходит всего за 10-15 секунд (редко за 40-60 секунд).

    При зарождении землетрясения происходит разрушение породы на ограниченном участке, расположенном на определенной глубине от поверхности Земли. В связи с возникшем ослаблением происходит развитие дислокации на очаг или гипоцентральную часть область землетрясения. Разрушение произойдет там, где порода наименее прочна, это может быть в разломах между блоками. В силу каких-то глубинных процессов отдельные участки коры поднимаются или опускаются. При медленном смещении в земной коре происходят пластические деформации. При более быстрых движениях и при большем их градиенте напряжения, возникающие в коре, не успевая рассасываться, достигают величин, при которых в данных условиях происходит нарушение «сплошности» – либо по готовому, отчасти уже залечившемуся разрыву, либо с образованием нового. С увеличением глубины возрастают всесторонние сжимающие напряжения, и поэтому возникают большие силы трения, препятствующие быстрому разрушению. Возможно по этой причине глубокофокусные землетрясения отличаются большой энергией и продолжительностью.

    Кроме землетрясений, вызванных тектоническими движениями в земной коре и в верхних слоях мантии, существуют два других типа землетрясений, происходящих вследствие извержения вулканов и карстовых явлений, которые очень локальны, редки и обладают малой силой. Землетрясения могут быть вызваны искусственным путем, например, при подземном взрыве. Колебания поверхности могут земли могут быть вызваны и работой промышленного оборудования, движением транспорта и т. д. При использовании чувствительной аппаратуры можно убедиться, что поверхность земли постоянно колеблется; эти колебания очень малы и по этой причине называются микросейсмическими. Наличие микросейсм позволяет извлечь очень полезную информацию как для сейсмологов, так и для инженеров- строителей.

    Таким образом, в широком смысле под термином землетрясение можно понимать любые сотрясения поверхности Земли. В более узком смысле под землетрясением понимается кратковременное сотрясение поверхности Земли, вызванное сейсмическими волнами, возникшими при местном нарушении сплошности с внезапным выделением в недрах коры или верхней мантии (на глубину примерно до 700 км) упругой энергии.

    В какой-то момент землетрясения возникает препятствие взаимному смещению блоков вдоль образовавшихся швов – частично восстанавливаются связи разорванного шва, которыми могут служить силы трения (их появление возможно на сжатых участках), зацепления на поверхностях. Не освободившаяся часть энергии вызывает в новых связях напряжения, которые через некоторое время преодолеют их сопротивление, возникает новый разрыв и новый толчок, однако меньшей силы, чем в момент основного землетрясения. Этих повторных толчков – афтершоков – после сильного землетрясения бывает обычно до нескольких сотен и происходят они в течение нескольких месяцев, постепенно ослабевая. Процесс ослабления толчков во времени не равномерен. Отдельные афтершоки по силе могут приближаться к силе основного землетрясения. Иногда землетрясениям предшествуют слабые толчки – форшоки.

    В тех случаях, когда землетрясения или вулканы происходят под дном океанов, они возбуждают морские волны, которые, достигая берегов суши и встречая их сопротивление поднимаются на высоту до нескольких десятков метров. Такие волны – цунами (по-японски «цу» – порт, «нами» – волна) – временами приносят прибрежным районам большие беды.

    Различают две группы сейсмических волн – объемные и поверхностные. Слагающие Землю горные породы упруги и поэтому могут деформироваться и испытывать колебания при резком приложении давления (нагрузок). Внутри объема горных пород распространяются объемные волны. Они делятся на два типа: продольные и поперечные. Продольные волны в теле Земли, как и привычные нам звуковые в воздухе, попеременно сжимают и растягивают вещество горных пород в направлении своего движения. Волны другого типа колеблют среду, через которую они проходят, поперек пути своего движения. Именно они-то, выходя на поверхность, раскачивают из стороны в сторону и вверх-вниз все на земле находящееся, приводя к наибольшим разрушениям. Именно потому, что поверхность твердой Земли – это граница с гораздо менее плотной средой, воздушной (ее называют свободной поверхностью), на земной поверхности объемные сейсмические волны могут свободнее «разгуляться», что обычно и происходит. Этому способствует и свойства приповерхностных грунтов.

    Очень важны свойства разных групп и типов сейсмических волн, особенно скорость их прохождения через горные породы. Обычно она измеряется несколькими километрами в секунду и, следовательно, на разных расстояниях от очага (гипоцентра и эпицентра) приход волн и ощущается, и регистрируется неодновременно. На этом свойстве основано определение координат эпицентра по записям прихода волн на удаленные сейсмические станции. Не менее важны различие в скоростях отдельных групп и типов волн. Так поверхностные волны распространяются медленнее объемных и, следовательно, приходят в пункты наблюдения позднее. В группе объемных поперечные волны распространяются в среднем в 1,75 раза медленнее продольных. Отсюда понятно, почему оказавшиеся в эпицентральной области сильного землетрясения люди часто попадают во власть волн: их толкает, качает, трясет в разных направлениях с разными ускорениями.

    Очевидцы нередко «слышат» землетрясения в буквальном смысле слова. Продольные волны сходны со звуковыми. При определенной частоте колебаний (в диапазоне слышимых волн, то есть более 15 герц) они при выходе на поверхность и становятся звуковыми волнами. Если вспомнить, что продольные волны распространяются быстрее, а поперечные нередко несут главные разрушения, легко понять, почему гул может слышаться перед землетрясением. Тут много зависит и от спектров излучения.

    Землетрясения классифицируются в зависимости от глубины расположения их очага. Они делятся на следующие три типа:

    1) нормальные- с глубиной очага 0-70 км;

    2) промежуточные – 70-300 км;

    3) глубокофокусные – более 300 км.

    Перспективы предсказаний

    Заинтересованность правительственных учреждений в прогнозе землетрясений исключительно велика – тысячи человеческих жизней могут быть спасены, если предсказания окажутся точными. Целые города могут эвакуированы зря, если оно окажется ложным. Из-за многих неопределенностей, связанных с землетрясениями удачное их предсказание бывает весьма редким. Тем не менее возможность точного предсказания настолько заманчива, что сегодня сотни ученых, в основном в США, Японии, Китае и России, заняты исследованиями по прогнозу землетрясений.

    В качестве возможной основы прогноза принят целый ряд признаков. Наиболее важны и надежны из них следующие:

    1) статистические методы,

    2) выделение сейсмически активных зон, которые долго не испытывали землетрясения,

    3) изучение быстрых смещений земной коры,

    4) исследование изменений соотношений скорости продольных и поперечных волн,

    5) изменения магнитного поля и электропроводности горных пород,

    6) изменения в составе газов, поступающих из глубин,

    7) регистрация предваряющих толчков «форшоков»,

    8) исследование распределения очагов во времени и пространстве.

    Статистические методы просты. Они основаны на анализе сейсмологической истории района: данных о числе, размерах и частоте повторения землетрясений. Предполагая, что сейсмичность района не меняется с течением времени, можно по этим данным оценить вероятность будущих землетрясений. Чем длиннее период времени, за который имеем сведения о землетрясениях, тем точнее будет прогноз.

    В Калифорнии сведения о землетрясениях собраны примерно за 200 лет, а в Китае имеются данные более чем за 2000 лет.

    Статистическое изучение сейсмического режима позволило ввести понятия сейсмического цикла и так называемых зон затишья – зон в сейсмически активных районах, где в течение длительного времени наблюдается слабая сейсмическая активность. Средняя длительность сейсмического цикла равна примерно 140 годам – время между сильнейшими сейсмическими событиями в одном месте. Зоны затишья – места накопления максимальной упругой энергии, где возможно ожидать сильное землетрясение. Это явилось основой долгосрочного сейсмического прогноза.

    Если известна частота, с которой землетрясения происходили в прошлом, можно сделать обобщенный статистический вывод о вероятности землетрясения в будущем.

    Статистические прогнозы не помогают предсказать конкретное место и конкретное время землетрясения. Таким образом, они не очень полезны с точки зрения предварительных мероприятий по безопасности. С другой стороны, они имеют огромное значение для инженеров, которые должны проектировать сооружения со сроком существования 50-100 лет.

    Принцип другого метода – выделение сейсмически активных зон без землетрясений – логичен. В его основе определение в сейсмически активных зонах участков, где долго не было толчков и где, следовательно, долго не происходило разрядки энергии. Именно там можно ожидать катастрофическое землетрясение. Этот метод правилен и проверен, однако для точного прогноза не представляет. Он не позволяет назвать ни день, ни неделю, ни месяц, когда произойдет событие. Но это не означает, что такого рода исследования не имеют значения: это обеспечит в угрожаемых местах своевременную подготовку и должно учитываться во всех нормативах при возведении зданий и промышленных объектов.

    О готовящемся землетрясении может свидетельствовать и увеличение скорости движения земной коры. Этот метод исследований используется в России, Японии, Соединенных Штатах Америки. Перед некоторыми землетрясениями земная поверхность быстро поднималась (быстро в геологическом смысле, со скоростью несколько миллиметров в год), затем движения прекращались, и происходило разрушительное землетрясение.

    Много внимания уделяют методу исследования соотношения скорости продольных и поперечных волн. Скорость сейсмических волн зависит от напряженного состояния горных пород, через которые волны распространяются, а также от содержания воды и других физических характеристик пород. В той степени, в какой изменения этих физических характеристик являются предвестниками землетрясений, можно рассматривать в качестве предвестников и скорости сейсмических волн. Скорости волн измеряются с помощью небольших взрывов в скважинах; при этом возбуждаются сейсмические волны, которые записываются близлежащими станциями. Продольные волны распространяются со скоростью приблизительно в 1,75 раза больше, чем поперечные. Перед землетрясением скорость продольных волн уменьшается, и это соотношение выражается цифрой 1,5. Подобное явление отмечается за несколько месяцев до сейсмического события. Непосредственно перед землетрясением указанное соотношение возвращается к «правильной цифре». Этот метод проверен экспериментально.

    Перед отдельными землетрясениями повышается напряженность магнитного поля и электропроводимость пород. Земное магнитное поле может испытывать локальные изменения из-за деформации горных пород и движений земной коры. С целью изменения малых вариаций магнитного поля были разработаны специальные магнитометры. Такие изменения наблюдались перед землетрясениями в большинстве районов, где были установлены магнитометры. Измерения электропроводимости пород проводятся с помощью электродов, помещаемых в почву на расстоянии нескольких километров друг от друга. При этом измеряется электрическое сопротивление толщи земли между ними. Электропроводность обеспечивается главным образом присутствием воды. Следовательно, сопротивление меняется, когда изменяется содержание воды.

    Многообещающим является метод изучения состава газа в подземных водах. Этот метод был разработан главным образом учеными, ведущими исследования на Камчатке и Средней Азии. Газы, перед землетрясением, оказываются сильно обогащены радоном. Но недавно группа калифорнийских ученых установила, что это газ выделяется в больших количествах и когда нет никакой сейсмической активности. Последние годы этот метод был распространен и на хлор, содержание которого возрастает в 6 раз (максимальная концентрация радона перед землетрясениями превышает нормальную в 2,7 раза). Высказано предположение, что содержание хлора резко возрастает за 3-5 дней до землетрясения. В настоящее время объектом исследования стало и изменения содержания гелия, ртути, серебра и других элементов.

    Некоторым сильным землетрясениям предшествуют более слабые толчки, так называемые форштоки. Установлена последовательность событий, предшествовавших нескольким сильным землетрясениям в Новой Зеландии и Калифорнии. Во-первых, это тесно сгруппированная серия толчков примерно равной магнитуды, которая называется «предваряющим роем». За ним следует период, названный «предваряющим перерывом», в течение которого нигде в окрестностях сейсмических толчков не наблюдается. Затем следует «главное землетрясение», сила которого зависит от величины роя землетрясений и продолжительности перерыва. Предполагается, что рой вызывается раскрытием трещин. Возможность прогнозирования землетрясений на основе этих представлений очевидна, однако имеются определенные трудности в выделении предваряющих роев из других сходных по характеру групповых землетрясений, и каких – либо бесспорных успехов в этой области не достигнуто. Положение и число землетрясений различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. В Японии исследования этого явления признаны заслуживающими доверия, но надежным на 100% этот метод не станет никогда, ибо многие катастрофические землетрясения происходили без каких-либо предварительных толчков.

    Известно, что очаги землетрясений не остаются на одном и том же месте, а перемещаются в пределах сейсмической зоны. Зная направления этого перемещения и его скорость, можно было бы предположить будущее землетрясение. К сожалению, такого рода перемещение очагов не происходит равномерно. В Японии скорость миграции очагов определена величиной 100 км в год. В районе Мацуширо в Японии регистрировалось множество слабых толчков – до 8000 в день. Через несколько лет оказалось, что очаги приближаются к поверхности и смещаются в южном направлении. Было вычислено вероятное место –положение очага следующего землетрясения и непосредственно к нему была пробурена скважина. Толчки прекратились.

    Наблюдение за необычным поведением животных перед землетрясением признано очень важным, хотя отдельные специалисты утверждают, что речь идет о случайности. В ответе на вопрос, что же, воспринимают животные ученые не пришли к согласию. Представляются разные возможности: может быть с помощью органов слуха животные слышат подземные шумы или улавливают ультразвуковые сигналы перед толчками, либо организм животных реагирует на незначительные изменения барометрического давления или на слабые изменения магнитного поля. Возможно животные воспринимают слабые продольные волны, в то время как человек ощущает только поперечные.

    Уровень грунтовых вод перед землетрясениями часто повышается или понижается, по-видимому, из-за напряженного состояния горных пород. Землетрясения могут влиять на уровень воды. Вода в скважинах может колебаться при прохождении сейсмических волн, даже если скважина находится далеко от эпицентра. Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других – ниже.

    Трудности прогноза

    Проблема предсказания землетрясения в настоящее время привлекает и ученых, и общественность как одна из серьезнейших и вместе с тем весьма актуальных. Мнения исследователей о возможности и путях решения проблемы далеко не однозначны.

    Принципиальная основа решения проблемы прогноза землетрясений состоит в установленном лишь в последние30 лет фундаментальном факте, что перед землетрясением меняются физические (механические и электрические в первую очередь) свойства горных пород. Возникают аномалии разного рода геофизических полей: сейсмического, поля скоростей упругих волн, электрического, магнитного, аномалии в наклонах и деформациях поверхности, гидрогеологическом и газохимическом режиме и т.д. В сущности, на этом и основано проявление большинства предвестников. Всего сейчас известно свыше 300 предвестников, из них 10-15 неплохо изучены.

    Прогноз землетрясения можно считать полным и практически значимым, если заблаговременно предсказываются три элемента будущего события: место, интенсивность (магнитуда) и время толчка. Карта сейсмического районирования, даже самая надежная, в лучшем случае дает сведения о возможной максимальной интенсивности землетрясений и средней частоте их повторения в какой-то зоне. Она содержит необходимые элементы прогноза, но самого прогноза обеспечить не в состоянии, так как не говорит о конкретных ожидаемых событиях. В ней отсутствует главнейший элемент прогноза – предсказания времени события.

    Трудности в отношении прогноза времени землетрясения огромны. Да и предвидение места и интенсивности будущих подземных бурь – тоже еще далеко не решенная задача. До сих пор не разработаны принципиальные возможности и конкретные способы предвидения землетрясений в любой части сейсмически опасного региона с заданной точностью места и интенсивности в заданный отрезок времени. Поэтому долгое время идеальной будет, по-видимому, такая схема: в пределах сейсмогенного региона выделяется некая достаточно обширная область, где в течение нескольких лет или десятилетий можно ожидать крупное сейсмическое событие. Предшествующими исследованиями область ожидаемого события снижается, уточняются возможная сила толчка или его энергетическая характеристика – магнитуда и опасный период времени на следующей стадии разработок определяется место предстоящего толчка, а время ожидания события сокращается до нескольких дней и часов. В сущности, схема предусматривает три последовательные стадии прогноза – долгосрочный, среднесрочный и краткосрочный.


    написать администратору сайта