Метрология 2020. 1. Что называют физической величиной
Скачать 26.94 Kb.
|
1. Что называют физической величиной? Технологическая деятельность человека связана с измерением различных физических величин. Физическая величина – это характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном отношении индивидуальная для каждого объекта. Значение физической величины – это оценка ее величины в виде некоторого числа принятых для нее единиц или числа по принятой для нее шкале. Например, 120 мм – значение линейной величины; 75 кг – значение массы тела, НВ 190 – число твердости по Бринеллю. Измерением физической величины называют совокупность операций, выполняемых с помощью технического средства, хранящего единицу, или воспроизводящую шкалу физической величины, заключающихся в сравнении (в явном или в неявном виде) измеряемой величины с ее единицей или шкалой с целью получения значения этой величины в форме, наиболее удобной для использования. В теории измерений принято, в основном, пять типов шкал: наименования, порядка, интервалов, отношений и абсолютная. Практическая реализация шкал конкретных свойств достигается путем стандартизации единиц измерений, шкал и (или) способов и условий их однозначного воспроизведения. Понятие неизменной для любых точек шкалы единиц измерений имеет смысл только для шкал отношений и интервалов (разностей). В шкалах порядка можно говорить только о числах, приписанных конкретным проявлениям свойства. Говорить о том, что такие числа отличаются в такое-то число раз или на столько-то процентов, нельзя. Для шкал отношений и разностей иногда не достаточно установить только единицу измерений. Так, даже для таких величин, как время, температура, сила света (и другие световые величины), которым в Международной системе единиц (SI) соответствуют основные единицы – секунда, Кельвин и кандела , практические системы измерений опираются так же на специальные шкалы. Кроме того, сами единицы SI в ряде случает базируются на фундаментальных физических константах. В этой связи можно выделить три вида физических величин, измерение которых осуществляется по различным правилам. К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношение типа «мягче», «тверже», «теплее», «холоднее». К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновения в него другого тела; температура как степень нагретости тела и т.п. Существование таких отношений устанавливается теоретически или экспериментально с помощью специальных средств сравнения, а также на основе наблюдений за результатами воздействия физической величины на какие либо объекты. Для второго вида физических величин отношение порядка и эквивалентности имеет место как между размерами, так и между разностями в парах их размеров. Так, разности интервалов времени считаются равными, если расстояние между соответствующими отметками равны. Третий вид составляют аддитивные физические величины. Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания. К таким величинам относятся длина, масса, сила тока. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер. Например, сумма масс двух тел – это масса такого тела, которое уравновешивает на равноплечих весах первые два. Понятие о системе физических величин. Множество физических величин представляет собой некоторую систему, в которой отдельные величины связаны между собой системой уравнений. Система физических величин – это совокупность взаимосвязанных физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются функциями независимых величин. Система физических величин содержит основные физические величины, условно принятые в качестве независимых от других величин этой системы, и производные физические величины, определяемые через основные величины этой системы. Основная физическая величина – физическая величина, входящая в систему единиц и условно принятая в качестве независимой от других величин этой системы. Производная единица системы единиц – единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами. Производная единица называется когерентной, если в этом уравнении числовой коэффициент принят равным единице. Соответственно, система единиц, состоящая из основных единиц и когерентных производных, называется когерентной системой единиц физических величин. Для каждой физической величины должна быть установлена единица измерения. Единица физической величины – физическая величин фиксированного размера, которой условно присвоено значение, равное единице, и применяемая для количественного выражения однородных физических величин. Кроме основных и производных физических величин различают кратные, дольные, когерентные, системные и несистемные единицы. Число независимых установленных величин равно разности числа величин, входящих в систему, и числа независимых уравнений связи между величинами. Размерность физической величины – выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь от данной величины с физическими величинами, принятыми в данной системе величин за основные, и с коэффициентом пропорциональности, равным единице. Показатель размерности физической величины – показатель степени, в которую возведена размерность основной физической величины, входящая в размерность производной физической величины. Размерности широко используют при образовании производных единиц и проверки однородности уравнений. Если все показатели степени размерности равны нулю, то такая физическая величина называется безразмерной. Все относительные величины (отношения одноименных величин) являются безразмерными. Систему единиц как совокупности основных и производных единиц впервые в 1832г. предложил немецкий ученый К. Гаусс. Он построил систему единиц, где за основу принял единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), и назвал ее абсолютной системой. Многообразие единиц измерения физических величин и систем единиц осложняло их применение. Одни и те же уравнения между величинами имели различные коэффициенты пропорциональности. Свойства материалов, процессов выражались различными числовыми значениями. Международный комитет по мерам и весам выделил из своего состава комиссию по разработке единой Международной системы единиц. Комиссия разработала проект Международной системы единиц, который был утвержден XI Генеральной конференцией по мерам и весам в 1960 г. Принятая система была названа Международной системой единиц, сокращенно СИ. Учитывая необходимость охвата Международной системой единиц всех областей науки и техники, в ней в качестве основных выбрать семь единиц. В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте – единица термодинамической температуры, в оптике – единица силы света, в молекулярной физике, термодинамике и химии – единица количества вещества. Эти семь единиц соответственно: метр, килограмм, секунда, ампер, Кельвин, кандела и моль – и выбраны в качестве основных единиц СИ. Единица длины (метр) – длина пути, проходимого светом в вакууме за 1/ 299792458 долю секунды. Единица массы (килограмм) – масса, равная массе международного прототипа килограмма. Единица времени (секунда) – продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Единица силы электрического тока (ампер) – сила неизменяющего тока, который, проходя по двум нормальным прямолинейным проводникам бесконечной длины и ничтожно малой площади круглого поперечного сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает между проводниками силу взаимодействия, равную 2*10-7 Н на каждый метр длины. Единица термодинамической температуры (Кельвин) – 1/273,16 термодинамической температуры тройной точки воды. Допускается использовать также шкалу Цельсия. Единица силы света (кандела) – силы света в заданном направлении источника, испускающего монохроматическое излучение частотой 540*1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср. Единица количества вещества (моль) – количество веществ системы, содержащей столько же структурных элементов, сколько атомов содержится в углероде-12 массой 0, 012 кг. Международная система единиц содержит также две дополнительные единицы: для плоского угла – радиан и для телесного угла – стерадиан. Радиан (рад0 – единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении 1 рад = 570 17’44, 8”. Стерадиан (ср) – единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы. В международной системе единиц, как и в других системах единиц физических единиц, важную роль играет размерность. Размерностью называют символическое (буквенное) обозначение зависимости производных величин (или единиц) от основных. Размерность служит качественной характеристикой величины и выражается произведением степеней основных величин, через которые может быть определена. 2. Назовите виды средств измерения. По метрологическому назначению средства измерений делятся на образцовые и рабочие. Образцовые предназначены для поверки по ним других средств измерений как рабочих, так и образцовых менее высокой точности. Рабочие средства измерений предназначены для измерения размеров величин, необходимых в разнообразной деятельности человека. Сущность разделения средств измерений на образцовые и рабочие состоит не в конструкции и не в точности, а в их назначении. К средствам измерения относятся: Меры, предназначенные дли воспроизведения физической величины заданно го размера. Различают однозначные и многозначные меры, а также наборы мер (гири, кварцевые генераторы и т. п.). Меры, воспроизводящие физические величины одного размера, называются однозначными. Многозначные меры могут воспроизводить ряд размеров физической величины, часто даже непрерывно заполняющих некоторый промежуток между определенными границами. Наиболее распространенными многозначными мерами являются миллиметровая линейка, вариометр и конденсатор переменной емкости. В наборах и магазинах отдельные меры могут объединяться в различных сочетаниях для воспроизведения некоторых промежуточных или суммарных, но обязательно дискретных размеров величин. В магазинах объединены в одно механическое целое, снабженное специальными переключателями, которые связаны с отсчетными устройствами. В противоположность этому набор состоит обычно из нескольких мер, которые могут выполнять свои функции как в отдельности, так и в различных сочетаниях друг с другом (набор концевых мер длины, набор гирь, набор мер добротности и индуктивности и т. д.). Сравнение с мерой выполняют с помощью специальных технических средств — компараторов (равноплечие весы, измерительный мост и т. п.). К однозначным мерам относятся также образцы и образцовые вещества. Стандартные образцы состава и свойств веществ и материалов представляют собой специально оформленные тела или пробы вещества определенного и строго регламентированного содержания, одно из свойств которых при определенных условиях является величиной с известным значением. К ним относятся образцы твердости, шероховатости, белой поверхности, а также стандартные образцы, используемые при поверке приборов для определения механических свойств материалов. Образцовые вещества играют большую роль в создании реперных точек при осуществлении шкал. Например, чистый цинк служит для воспроизведения температуры 419,58°С, золото — 1064,43°С. В зависимости от погрешности аттестации меры подразделяются на разряды (меры 1-го, 2-го и т. д. разрядов), а погрешность мер является основой их деления на классы. Меры, которым присвоен тот или иной разряд, применяются для поверки измерительных средств и называются образцовыми. Измерительные преобразователи — это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения и обработки, но, как правило, не доступную для непосредственного восприятия наблюдателем (термопары, измерительные усилители и др.). Преобразуемая величина называется входной, а результат преобразования — выходной величиной. Соотношение между ними задается функцией преобразования (статической характеристикой). Если в результате преобразования физическая природа величины не изменяется, а функция преобразования является линейной, то преобразователь называется масштабным, или усилителем (усилители напряжения, измерительные микроскопы, электронные усилители). Слово «усилитель» обычно употребляется с определением, которое приписывается ему в зависимости от рода преобразуемой величины (усилитель напряжения, гидравлический усилитель) пли от вида единичных преобразований, происходящих и нем (ламповый усилитель, струйный усилитель). В тех случаях, когда в преобразователе входная величина превращается в другую по физической природе величину, он получает название по видам этих величин (электромеханический, пневмоемкостный и так далее). По месту, занимаемому в приборе, преобразователи подразделяются на: первичные, к которым подводится непосредственно измеряемая физическая величина; передающие, на выходе которых образуются величины, удобные для их регистрации и передачи на расстояние; промежуточные, занимающие в измерительной цепи место после первичных. Измерительные приборы относятся к средствам измерений, предназначенным для получения измерительной информации о величине, подлежащей измерению, в форме, удобной для восприятия наблюдателем. Наибольшее распространение получили приборы прямого действия, при использовании которых измеряемая величина подвергается ряду последовательных преобразований в одном направлении, то есть без возвращения к исходной величине. К приборам прямого действия относится большинство манометров, термометров, амперметров, вольтметров и т. д. Значительно большими точностными возможностями обладают приборы сравнения, предназначенные для сравнения измеряемых величин с величинами, значения которых известны. Сравнение осуществляется с помощью компенсационных или мостовых цепей. Компенсационные цепи применяются для сравнения активных величии, то есть несущих в себе некоторый запас энергии (сил, давлений и моментов сил, электрических напряжений и токов, яркости источников излучения и т. д.). Сравнение проводится путем встречного включения этих величин в единый контур и наблюдения их разностного эффекта. По этому принципу работают такие приборы, как равноплечие и пе-равноплечие весы (сравнение на рычаге силовых эффектов действия масс), грузопоршневые и грузонружинные манометрические в вакуумметрические приборы (сравнение на поршне силовых эффектов измеряемого давления и мер массы) и др. Для сравнения пассивных величии (электрические, гидравлические, пневма-тические и другие сопротивления) применяются мостовые цепи типа электрических уравновешенных или неуравновешенных мостов. По способу отсчета значений измеряемых величин приборы подразделяются на показывающие, в том числе аналоговые и цифровые, и на регистрирующие. Наибольшее распространение получили аналоговые приборы, отсчётные устройства которых состоят из двух элементов — шкалы и указателя, причем один из них связан с подвижной системой прибора, а другой — с корпусом. В цифровых приборах отсчет осуществляется с помощью механических, электронных или друшх цифровым отсчётных устройств. По способу записи измеряемой величины регистрирующие приборы делятся на самопишущие и печатающие. В самопишущих приборах (например, барограф или шлейфовый осциллограф) запись показаний представляет собой график или диаграмму. В печатающих приборах информация о значении измеряемой величины выдается в числовой форме на бумажной ленте. Автоматические приборы сравнения выпускаются чаще всего в виде комбинированных приборов, в которых шкальный или цифровой отсчет сочетается с записью на диаграмме или с печатанием результатов измерений. Вспомогательные средства измерений. К этой группе относятся средства измерений величин, влияющих на метрологические свойства другого средства измерений при его применении или поверке. Показания вспомогательных средств измерений используются для вычисления поправок к результатам измерений (например, термометров для измерения температуры окружающей среды при работе с грузопоршневыми манометрами) или для контроля за поддержанием значений влияющих величин в заданных пределах (например, психрометров для измерения влажности при точных интерференционных измерениях длин). Измерительные установки. Для измерения какой-либо величины или одновременно нескольких величин иногда бывает недостаточно одного измерительного прибора. В этих случаях создают целые комплексы расположенных в одном месте и функционально объединенных друг с другом средств измерений (мер, преобразователей, измерительных приборов и вспомогательных средств), предназначенных для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем. Измерительные системы — это средства и устройства, территориально разобщенные и соединенные каналами связи. Информация может быть представлена в форме, удобной как для непосредственного восприятия, так и для автоматической обработки, передачи и использования в автоматизированных системах управления. Технические устройства, предназначенные для обнаружения (индикации) физических свойств, называются индикаторами (стрелка компаса, лакмусовая бумага). С помощью индикаторов устанавливается только наличие измеряемой физической величины интересующего нас свойства материи. В качестве примера индикатора можно привести указатель количества бензина в бензобаке автомобиля. Список литературы: 1. «Управление качеством» под общей редакцией В.Е.Сыцко. Мн. «Вышэйшая школа»,2008. 2. Сергеев А.Г., Крохин В.В. Метрология: Учебное пособие для вузов. – М.; Логос, 2001. 3. Основы метрологии, стандартизации и контроля качества: Учебное пособие. – М.;2000. 4. Сыцко В.Е. «Управление качеством»: Учебное пособие для вузов, 2-е издание, 1999. 01.03.2020 подпись |