Конструкция современных головных фар. Контрольная конструкция современных головных фар. 1. Конструкция современных головных фар 3
Скачать 159.81 Kb.
|
Содержание Введение 2 1. Конструкция современных головных фар 3Заключение 9 Список используемой литературы 10 Введение. Системы освещения занимают особое место в электрооборудовании автомобилей, так как эффективность автономного освещения в условиях роста автомобилизации и возрастающей роли автомобильных перевозок по существу определяет безопасность дорожного движения в темное время суток. Естественно, что нормы на светотехнические характеристики также определяются требованиями безопасности и существующими условиями дорожного движения. Наиболее распространенной конструкцией фар на протяжении долгого времени была американская лампа-фара, представляющая собой неразборный оптический элемент, содержащий спаянные в колбу, заполненную инертным газом, отражатель и рассеиватель круглой или прямоугольной формы, внутри которой смонтированы одна или две нити накала. В Европе, начиная с 1950-х годов, широкое распространение получили металлостеклянные элементы со сменным источником света, представляющим собой обычную или галогенную лампу с одним или двумя телами накала, устанавливаемую в слепое отверстие металлического отражателя. Наряду с совершенствованием характеристик светораспределения конструкторами автомобилей постоянно выдвигаются настойчивые требования по улучшению аэродинамических характеристик и уменьшению массы транспортных средств, во многом определяющие их топливную экономичность. Удовлетворение этим требованиям по существу и определяют современные тенденции совершенствования конструкций фар и технологических процессов их изготовления. Требования к уменьшению коэффициента аэродинамического сопротивления практически предопределяют уменьшение вертикального габарита фары почти в два раза, что возможно только при очень рациональном распределении светового потока и увеличении КПД фары. Новые конструкции фар требуют выполнения отражателя сложной формы, допускающей изготовление только из легко формуемых материалов (стекло, пластмасса). Поэтому в настоящее время происходит переход к пластмассовым конструкциям световых приборов транспортных средств. 1. Конструкция современных головных фар.Основными конструктивными элементами головных фар являются: корпус; регулировочный механизм; оптический элемент, содержащий отражатель; рассеиватель; экран прямых лучей; одно- или двухрежимный источник света. Одной из важных конструктивных характеристик фары служит ее форма - круглая или прямоугольная. На протяжении почти 40 лет основной формой фары была круглая со стандартизованными размерами оптического элемента - Ø 178 мм у двухфарной системы и Ø 146 мм у четырехфарной системы освещения. Рис. 1 Устройство круглой фары Устройство круглой фары приведено на Рис. 1 Она состоит из: 1 - оптический элемент; 2- ободок; 3 - регулировочные винты; 4 -держатель; 5 - корпус; 6- источник света; 7- токоподводящая колодка; 8 - винты крепления ободка. Оптический элемент 1 круглой фары выполнен в виде склеенных между собой стеклянного рассеивателя и металлического отражателя, в слепое отверстие которого установлен источник света с одним или двумя (в зависимости от режима работы) телами накала. На отбортовке горловины установлен спрессованный фланец с пружинными зажимами, поджимающими опорный фланец лампы к опорному торцу отражателя. Источник света 6 установлен таким образом, чтобы тело накала дальнего света было расположено в фокусе отражателя, а тело накала ближнего света было расфокусировано относительно фокуса отражателя вперед и вверх. В современных конструкциях применяются обычные лампы типа Е, например А12-45+40 и галогенные источники света типа Н: Н1, НЗ, Н4, Н7, Н9, Н11, Н13. К отражателю на кронштейнах приклепывается экран прямых лучей от лампы, что позволяет несколько снизить ослепление водителей встречных автомобилей (при ближнем свете) и уменьшить яркость свечения атмосферы при ее малой прозрачности. Экран выполняют из тонкой металлической ленты сферической формы. Отражатель круглых фар имеет параболоидную форму с фокусным расстоянием, варьируемым в различных конструкциях от 19 до 28,5 мм. Держатель 4 подвижно установлен в корпусе фары и за счет упругой подвески пружинами сжатия и распором двумя винтами 3, имеет возможность поворачиваться в двух плоскостях - вертикальной и горизонтальной, обеспечивая тем самым регулировку светового пучка относительно дороги. Рассеиватель оптического элемента представляет собой круглое или прямоугольное стекло, на внутренней поверхности которого находятся преломляющие элементы: цилиндрические и сферические линзы, призмы и призмолинзы. Рассеиватели фар изготавливаются, как правило, из бесцветного силикатного стекла. В последнее время ведутся работы по замене стекла абразивостойкой пластмассой, однако дешевых способов ее получения до сих пор не найдено. Корпус 5 круглых фар выполняется металлическим с фланцем для крепления к кузову автомобиля и имеет кронштейн для установки ободка 2, поджатого к поверхности оптического элемента. В тыльной части корпуса имеется отверстие для установки жгута коммутирующих проводов со штекерными токоподводящими разъемами с обоих концов, один для подключения к источнику света, другой - к сети автомобиля. Другой разновидностью традиционных конструкций фар является прямоугольная фара, получившая распространение в 60-х годах. Ее характерной особенностью является использование усеченного параболоида с большим диаметром светового отверстия (до 250 мм), что обеспечивает увеличение работающих зон в горизонтальном направлении, чем существенно улучшается светораспределение в режиме ближнего света. Кроме того, такая форма позволяет снизить вертикальный габарит фары и обеспечивает тем самым предпосылки к снижению коэффициента аэродинамического сопротивления воздушному потоку, чем повышает топливную экономичность автомобиля. К недостаткам прямоугольных фар следует отнести их худшую технологичность, большую стоимость и потребность в большем подкапотном пространстве для размещения. Принцип работы светооптической схемы этих фар, а следовательно, и требования к ее элементам такие же, как и к фарам Круглого исполнения, а их конструкция в силу особенностей формы имеет ряд существенных отличий. Из-за большего горизонтального размера поворот оптического элемента такой фары при регулировке на 4° сопровождается большим линейным перемещением боковых краев рассеивателя и выступанием их из-за декоративного ободка на 15...20 мм. Это обстоятельство заставляет крепить рассеиватель неподвижно, а направление светового пучка регулировать поворотом только отражателя внутри корпуса фары. Рис.2 На Рис. 2 изображена типовая конструкция прямоугольной фары. В корпусе 2, выполненном из пластмассы, закреплен винтами через ободок рассеиватель 1. (В других вариантах рассеиватель к корпусу может приклеиваться, поджиматься плоскими пружинами или хомутами.) Отражатель 3 смонтирован внутри корпуса подвижно на трех опорных шаровых шарнирах 10. Шаровой шарнир 4 является неподвижной опорой. Поворот отражателя в горизонтальной плоскости обеспечивается вращением винта 6, перемещающего шарнир 7; отражатель при этом поворачивается вокруг вертикальной оси, проходящей через центры шарниров 4 и 5. Крайние положения отражателя показаны на Рис. 2 штриховой линией. Регулировка наклона светового пучка фазы осуществляется двумя винтами 8 и 9. Начальная (установочная) регулировка производится винтом 9, отражатель при этом поворачивается вокруг горизонтальной оси, проходящей через центры шарниров 4 и 7. Корректировка угла наклона светового пучка фазы (например, при изменении нагрузки автомобиля), т.е. изменение положения пучка в вертикальной плоскости, осуществляется винтом 8, от которого может быть сделан привод в кабину водителя. На основе изображенной на Рис. 3 конструкции легко изготавливается блок-фара с встроенным внутрь корпуса (Рис. 3 а) или смонтированными сбоку (Рис. 3 б) необходимыми светосигнальными приборами. Рис. 3 Блок-фары получили широкое распространение в 1980-е годы за счет некоторого снижения себестоимости комплекта световых приборов и более органичного эстетического оформления передней части автомобиля. В США, Японии и ряде других стран оптические элементы традиционных конструкций фар, как круглых, так и прямоугольных, выполняют в виде неразъемных ламп-фар. Рассеиватель и отражатель этих приборов изготавливают из стекла, после чего отражатель алюминируют, монтируют в нем систему нитей накала, сваривают тражатель с рассеивателем, откачивают из образовавшейся колбы воздух и окончательно заваривают колбу. Постоянно увеличивающийся дефицит топлива предопределил устойчивую тенденцию к снижению коэффициента аэродинамического сопротивления воздушному потоку при движении автомобиля, реализация которой потребовала обеспечения узкого профиля передней части автомобиля, а следовательно, и резкого ограничения высоты фары до 60...90 мм вместо 120...150 мм. Эти требования практически исключают возможность использования в конструкциях фар традиционных светооптических схем, так как для сохранения необходимого светового потока в этом случае требуется значительное увеличение глубины отражателя, что вызывает технологические трудности. Кроме того, традиционные светооптические схемы, в которых функция перераспределения светового потока выполняется рассеивателем с глубокими призмами, не допускает его наклона в вертикальной плоскости на углы, большие чем 25°. Именно эти обстоятельства привели к разработке принципиально новых решений. Фирмой Lucac (Великобритания) была предложена конструкция фары, в которой отражатель выполнен в виде объединения нескольких (двух-трех) усеченных параболоидных элементов с различным фокусным расстоянием 20 и 40 мм при совмещенных положениях их фокусов. Этот принцип объединения разнофокусных отражателей называется гомофокальным. Использование этого принципа позволяет подобрать и скомпоновать отражатель из отдельных секторов разнофокусных отражателей таким образом, чтобы обеспечить формирование заданного светораспределения режимов ближнего и дальнего света практически за счет отражателя. Рис. 4 Реализация этой светооптической схемы позволила сконструировать фару, полностью удовлетворяющую современным требованиям автомобилестроителей по аэродинамике. На Рис. 4 показан профиль автомобиля с такими фарами. Практическая реализация гомофокальной конструкции потребовала пересмотра технологии изготовления, так как сложный профиль отражателя с высокой точностью можно получить лишь из легко формуемых материалов, т. е. пластмасс, обладающих также высокой термостойкостью, что обеспечивает работу фары с галогенными лампами. Стоимость материалов пока очень высока, а технологический процесс их формования достаточно трудоемок, что является сдерживающим фактором широкого применения конструкции этого типа. Эллипсоидные фары головного света, предложенные фирмой Hella, представляют другое направление развития конструкции. Их характерной особенностью является более полное использование светового потока лампы при ближнем свете, т. е. относительно большой КПД. Конструкция такой фары (Рис. 5) содержит эллипсоидный отражатель 2, в один из фокусов которого установлен источник света 1. Весь световой поток, отраженный таким отражателем, концентрируется в его втором фокусе, где в режиме ближнего света частично экранируется, что позволяет создать четкую светотеневую границу. Затем используемый пучок корректируется с помощью достаточно простой линзы 3. Для достижения необходимых значений светотехнических характеристик отражатель снабжают элементами параболоидных поверхностей, сопряженными с эллипсоидом, и преломляющими концентрическими призматическими элементами. Рис. 5 К основным недостаткам светооптических схем этого типа следует отнести технологические трудности, высокую стоимость, а также ограниченное их использование только в четырехфарной системе освещения. Естественно, что этими направлениями не исчерпываются пути совершенствования: светооптических схем оптических элементов и систем освещения в целом. Продолжает совершенствоваться система поляризованного света, ведутся поиски использования в системах освещения волоконной оптики. Заключение. Процесс эксплуатации транспортных средств сопровождается ухудшением характеристик световых приборов, что обусловлено нарушением регулировки фар от воздействия вибрационной нагрузки, изменением жесткости подвески, заменой источников света, ухудшением светотехнических характеристик, вызванным загрязнением рабочих поверхностей отражателя и рассеивателя, абразивным износом, поверхностей рассеивателя, уменьшением светового потока источников света из-за падения напряжения в цепи, вызванного эрозией контактов. Ухудшение функциональных характеристик приводит к увеличению числа дорожно-транспортных происшествий и снижению эффективности перевозок, что при росте автомобилизации и возрастающей роли автомобильных перевозок оборачивается значительным материальным и моральным ущербом. Для обеспечения безопасности движения и эффективности работы автомобильного транспорта согласно нормативным документам, принятым в России, установлены периодичность и объем работ, выполняемых при ежедневном обслуживании (ЕО) и ТО-1 систем освещения. При ЕО проводятся моечно-уборочные и контрольно-осмотровые работы. Состав работ при проведении ТО-1 предусматривает дополнительно к работам ЕО следующие операции: проверку, правильности установки и регулировки фар; проверку силы света фар и светосигнальных огней; проверку состояния ламп, проводов, контактов, элементов крепления. При ТО-1 все перечисленные работы проводят без снятия приборов с автомобиля. Список используемой литературы: Акимов С.В., Чижков Ю.П. Электрооборудование автомобилей. Учебник для вузов. М. «За рулем», 2001 г., 384 с. Банников С.П. Электрооборудование автомобилей. М.: Транспорт, 1977,288с. Боровских Ю.И., Буравлев Ю.В., Морозов К.А. Устройство автомобиля. М.: Высшая школа, 1988, 288 с Галкин Ю.М. Электрооборудование автомобилей и тракторов. М.: Машиностроение, 1967, 280 с. |