Главная страница

Расчет гексана. 1. Виды теплообменников Расчет кожухотрубчатого теплообменника


Скачать 2.79 Mb.
Название1. Виды теплообменников Расчет кожухотрубчатого теплообменника
АнкорРасчет гексана
Дата15.05.2022
Размер2.79 Mb.
Формат файлаrtf
Имя файла524973.rtf
ТипРеферат
#531183



Содержание
Введение

1. Виды теплообменников

2. Расчет кожухотрубчатого теплообменника

Список литературы

Введение
Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, испарителей и конденсаторов. Теплообменники предназначены для нагрева и охлаждения. В зависимости от способа передачи тепла различают две основные группы теплообменников:

Поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена. Теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении. В химической технологии применяются теплообменники, изготовлен­ные из самых различных металлов (углеродистых и легированных сталей, меди, титана, тантала и др.), а также из неметаллических материалов, например графита, тефлона и др. Выбор материала диктуется в основном его коррозионной стойкостью и теплопроводностью, причем конструкция теплообменного аппарата существенно зависит от свойств выбранного материала. Конструкции теплообменников должны отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать, возможно, меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки. Теплообменниками называются аппараты, в которых происходит теплообмен между рабочими средами независимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, конденсаторы, пастеризаторы, испарители, деаэраторы, экономайзеры и др.). Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых передача тепла является основным процессом, и реакторы, в которых тепловой процесс играет вспомогательную роль.
1. Виды теплообменников

теплообменник кожухотрубчатый нагрев конденсация

Классификация теплообменников возможна по различным признакам.

1. По способу передачи тепла различаются теплообменники смешения, в которых рабочие среды непосредственно соприкасаются или перемешиваются, и поверхностные теплообменники–рекуператоры, в которых тепло передаётся через поверхность нагрева твёрдую (металлическую) стенку, разделяющую эти среды.

2. По основному назначению различаются подогреватели, испарители, холодильники, конденсаторы.

В зависимости от вида рабочих сред различаются теплообменники:

а) жидкостно–жидкостные – при теплообмене между двумя жидкими средами;

б) парожидкостные – при теплообмене между паром и жидкостью (паровые подогреватели, конденсаторы);

в) газожидкостные – при теплообмене между газом и жидкостью (холодильники для воздуха) и др.

По тепловому режиму различаются теплообменники периодического действия, в которых наблюдается нестационарный тепловой процесс, и непрерывного действия с установившимся во времени процессом.

Многотрубный кожухотрубчатый теплообменник представляет собой пучок трубок, помещенных в цилиндрическую камеру (кожух); таким образом, внутренность камеры является межтрубным пространством. Трубки ввальцованы в трубные решетки, ограничивающие камеру со всех сторон. К трубным решеткам крепятся распределительные коробки с патрубками для впуска рабочей жидкости, протекающей внутри трубок. Камера снабжена также патрубками для подвода и отвода второго рабочего тела.

Трубки латунные, медные или стальные применяются диаметром от 10 мм и выше; трубки имеют большие диаметры при вязких или загрязненных жидкостях.

Для помещения в кожухе большей поверхности теплообмена и получения большего коэффициента теплоотдачи выгоднее применять трубки меньшего диаметра.

Трубные решетки могут быть наглухо приварены или приклёпаны к корпусу, одна из решеток может быть не соединена с камерой. В этом случае уплотнение достигается резиновым кольцом, зажимающим щель между корпусом и решеткой.

Кожух теплообменника обычно стальной, цилиндрический. Иногда для обеспечения свободы температурного расширения кожуха и трубок на кожухе устраивают компенсатор.

Кожухотрубчатые теплообменники.

Основными элементами кожухотрубчатых теплообменников являются пучки труб, трубные решетки, корпус, крыш­ки, патрубки. Концы труб крепятся в трубных решетках разваль­цовкой, сваркой и пайкой.

Для увеличения скорости движения теплоносителей с целью интенсификации теплообмена нередко устанавливают перегородки как и трубном, так и межтрубном пространствах.

Кожухотрубчатые теплообменники могут быть вертикальными, горизонтальными и наклонными в соответствии с требованиями технологического процесса или удобства монтажа. В зависимости от неличины температурных удлинений трубок и корпуса применяют кожухотрубчатые теплообменники жесткий, полужесткой и нежесткой конструкции.

Аппараты жесткой конструкции используют при сравнительно небольших разностях температур корпуса и пучка труб; эти теплообменники отличаются простотой устройства.

В кожухотрубчатых теплообменниках нежесткой конструкции предусматривается возможность некоторого независимого перемещения теплообменных труб и корпуса для устранения до­полнительных напряжений от температурных удлинений. Нежесткость конструкции обеспечивается сальниковым уплотнением на патрубке или корпусе, пучком U об-разных труб, подвижной трубной решеткой закрытого и открытого типа.

В аппаратах полужесткой конструкции температурные деформации компенсируются осевым сжатием или расширением специальных компенсаторов, установленных па корпусе. Полужесткая конструкция надежно обеспечивает компенсацию температурных деформаций, если они не превышают 10—15 мм, а условное давление в межтрубном пространстве составляет не более 2,5 кгс/см2 .

Элементные (секционные) теплообменники.

Эти теплообменники состоят из последовательно соединенных элементов—секций. Сочетание нескольких элементов с малым числом труб соответствует принципу многоходового кожухотрубчатого аппарата, работающего на наиболее выгодной схеме — противоточной. Элементные теплообменники эффективны в случае, когда теплоносители движутся с соизмеримыми скоростями без изменения агрегатного состояния. Их также целесообразно применять при высоком давлении рабочих сред. Отсутствие перегородок снижает гидравлические сопротивления и уменьшает степень загрязнения межтрубного пространства. Однако по сравнению с многоходовыми кожухотрубчатыми теплообменниками элементные теплообменники менее компактны и более дороги из-за увеличения числа дорогостоящих элементов ап­парата—трубных решеток, фланцевых соединений, компенсато­ров и др. Поверхность теплообмена одной секции применяемых элементных теплообменников составляет 0,75—30 м2, число тру­бок — от 4 до 140.

Двухтрубные теплообменники типа “труба в трубе”.

Теплообменники этого типа состоят из ряда последовательно соединенных звеньев. Каждое звено представляет собой две сносные трубы. Для удобства чистки и замены внутренние трубы обычно соединяют между собой «калачами» или коленами. Двухтрубные теплообменники, имеющие значительную поверхность нагрева, состоят из ряда секций, параллельно соединенных коллекторами. Если одним из теплоносителей является насыщенный пар, то его, как правило, направляют в межтрубное (кольцевое) пространство. Такие теплообменники часто применяют как жидкостные или газожидкостные. Подбором диаметров внутренней и наружной труб можно обеспечить обеим рабочим средам, участвующим в теплообмене, необходимую скорость для достижения высокой интенсивности теплообмена.

Преимущества двухтрубного теплообменника: высокий коэффициент теплоотдачи, пригодность для нагрева или охлаждения сред при высоком давлении, простота изготовления, монтажа и обслуживания.

Недостатки двухтрубного теплообменника — громоздкость, высокая стоимость вследствие большого рас­хода металла на наружные трубы, не участвующие в теплообмене, сложность очистки кольцевого пространства.

Витые теплообменники

Поверхность нагрева витых теплообменников компонуется из ряда концентрических змеевиков, заключенных в кожух и закрепленных в соответствующих головках. Теплоносители движутся по трубному и межтрубному пространствам. Витые теплообменники широко применяют в аппаратуре высокого давления для процессов разделения газовых смесей методом глубокого охлаждения. Эти теплообменники характеризуются способностью к самокомпенсации, достаточной для восприятия деформаций от температурных напряжений.

Погружные теплообменники

Теплообменники этого типа состоят из плоских или цилиндрических змеевиков (аналогично витым), погруженных в сосуд с жидкой рабочей средой. Вследствие малой скорости омывания жидкостью и низкой теплоотдачи снаружи змеевика погружные теплообменники являются недостаточно эффективными аппаратами. Их целесообразно использовать, когда жидкая рабочая среда находится в состоянии кипения или имеет механические включения, а также при необходимости применения поверхности нагрева из специальных материалов (свинец, керамика, ферросилид и др.), для которых форма змеевика наиболее приемлема.

Оросительные теплообменники.

Оросительные теплообменники представляют собой ряд расположенных одна над другой прямых труб, орошаемых снаружи водой. Трубы соединяют сваркой или на фланцах при помощи «калачей». Оросительные теплообменники применяют главным образом в качестве холодильников для жидкостей и газов или как конденсаторы. Орошающая вода равномерно подается сверху через желоб с зубчатыми краями. Вода, орошающая трубы, частично испаряется, вследствие чего расход ее в оросительных теплообменниках несколько ниже, чем в холодильниках других типов. Оросительные теплообменники — довольно громоздкие аппараты; они характеризуются низкой интенсивностью теплообмена, но просты в изготовлении и эксплуатации. Их применяют, когда требуется небольшая производительность, а также при охлаждении химически агрессивных сред или необходимости применения поверхности нагрева из специальных материалов (например, для охлаждения кислот применяют аппараты из кислотоупорного ферросилида, который плохо обрабатывается).

Ребристые теплообменники.

Ребристые теплообменники применяют для увеличения теплообменной поверхности оребрением с той стороны, которая характеризуется наибольшими термическими сопротивлениями. Ребристые теплообменники (калориферы) используют, например, при нагревании паром воздуха или газов. Важным условием эффективного использования ребер является их плотное соприкосновение с основной трубой (отсутствие воздушной прослойки), а также рациональное размещение ребер.

Ребристые теплообменники широко применяют в сушильных установках, отопительных системах и как экономайзеры.

Спиральные теплообменники.

В спиральных теплообменниках поверхность нагрева образуется двумя тонкими металлическими листами, приваренными к разделительной перегородке (керну) и свернутыми в виде спиралей. Для придания листам жесткости и прочности, а также для фиксирования расстояния между спиралями к листам с обеих сторон приварены дистанционные бобышки. Спиральные каналы прямоугольного сечения ограничиваются торцовыми крышками. Уплотнение каналов в спиральных теплообменниках осуществляют различными способами. Наиболее распространен способ, при котором каждый канал с одной стороны заваривают, а с другой уплотняют плоской прокладкой. При этом предотвращается смешение теплоносителей, а в случае неплотности прокладки наружу может просачиваться только один из теплоносителей. Кроме того, такой способ уплотнения дает возможность легко чистить каналы.

Если материал прокладки разрушается одним из теплоносителей, то один канал заваривают с обеих сторон (“глухой” канал), а другой уплотняют плоской прокладкой. При этом “глухой" канал недоступен для механической очистки.

Уплотнение плоской прокладкой обоих открытых (сквозных) каналов применяют лишь в тех случаях, когда смешение рабочих сред (при нарушении герметичности) безопасно и не вызывает порчи теплоносителей.

Сквозные каналы также можно уплотнить, при более или менее постоянном давлении в каналах, спиральными U-образными манжетами, прижимаемыми силой внутреннего давления к выступам в крышке. Спиральные теплообменники отличаются компактностью, малыми гидравлическими сопротивлениями и значительной интенсивностью теплообмена при повышенных скоростях теплоносителей. Недостатки спиральных теплообменников — сложность изготовления и ремонта, невозможность применения их при давлении рабочих сред свыше 10 кгс/см2.

Пластинчатые теплообменники.

В последнее время распространены пластинчатые разборные теплообменники, отличающиеся интенсивным теплообменом, простотой изготовления, компактностью, малыми гидравлическими сопротивлениями, удобством монтажа и очистки от загрязнений.

Эти теплообменники состоят из отдельных пластин, разделенных резиновыми прокладками, двух концевых камер, рамы и стяжных болтов. Пластины штампуют из тонколистовой стали (толщина 0,7 мм). Для увеличения поверхности теплообмена и турбулизации потока теплоносителя проточную часть пластин выполняют гофрированной или ребристой, причем гофры могут быть горизонтальными или расположены “в елку” (шаг гофр 11,5; 22,5; 30 мм; высота 4—7 мм).

К пластинам приклеивают резиновые прокладки круглой и специальной формы для герметизации конструкции; теплоноситель направляют либо вдоль пластины, либо через отверстие в следующий канал.

Движение теплоносителей в пластинчатых теплообменниках может осуществляться прямотоком, противотоком и по смешанной схеме. Поверхность теплообмена одного аппарата может из­меняться от 1 до 160 м2, число пластин—от 7 до 303.

В пластинчатых теплообменниках температура теплоносителя ограничивается 150°С (с учетом свойств резиновой прокладки), давление не должно превышать 10 кгс/см2.

Графитовые теплообменники.

Эти теплообменники составляют отдельную группу. Высокая коррозионная стойкость и значительная теплопроводность делают графит незаменимым в некоторых производствах. Промышленностью выпускаются блочные, кожухотрубчатые, оросительные теплообменники и погружные теплообменные элементы.

Блочный графитовый теплообменник представляет собой один или несколько прямоугольных или цилиндрических блоков, имеющих две системы непересекающихся, перпендикулярных отверстий, создающих перекрестную схему движения теплоносителей. Каждая система отверстий имеет графитовые крышки для ввода и вывода рабочих сред. На крышки накладывают металлические плиты и систему стягивают болтами, создавая в графите наименее опасные напряжения сжатия.
2. Расчет кожухотрубчатого теплообменника
Необходимо рассчитать и подобрать кожухотрубчатый теплообменник для охлаждения и конденсации паров гексан-толуола G1 = 15000 кг/ч с начальной температурой t1н = 50 ºC и температурой на выходе из конденсатора t1к = 25 ºC. При температуре конденсации пары имеют следующие физико-химические характеристики: ρ1 = 610 кг/м3; с1 = 4731 Дж/(кг·К) λ1 = 0,472 Вт/(м·К); μ1 = 0,000145 Па·с; Pr1 = с1·μ1/λ1 = 1,45; удельная теплота конденсации паров r1 = 1053000 Дж/кг.

Тепло конденсации отводить водой с начальной температурой t2н = 15 ºC. Примем температуру воды на выходе из конденсатора t2к = 20 ºC. При средней температуре: ºC имеем следующие физико-химические характеристики: ρ2 = 996 кг/м3; с2 = 4180 Дж/(кг·К); λ2 = 0,616 Вт/(м·К); μ2 = 0,00082 Па·с;
Pr2 = с2·μ2/λ2 = 5,56.
Рассчитаем критерий Прандтля для горячего и холодного раствора.





1.Определим тепловую нагрузку по формуле:
Вт
2. Определим расход воды:
кг/с
3. Рассчитаем среднюю разность температур:


ºC
4. В соответствии с табл. II.1 [33, с. 82] примем Кор = 600 Вт/(м·К). Ориентировочное значение поверхности теплопередачи равно:

м2 Задаваясь числом Re2 = 15000 определим соотношение n / z для конденсаторов из труб диаметром d = 20×2



,
где n – общее число труб; d – внутренний диаметр труб, мм.



Уточненный расчет поверхности теплопередачи

В соответствии с табл.[33, с. 93] соотношение n / z принимаем наиболее близкое к заданному значение конденсаторов с диаметром кожуха Д = 400 мм, диаметром труб 20×2, числом труб n =181, числом ходов z =1.



Наиболее близкую к ориентировочной поверхности теплопередачи имеет нормализованный аппарат с длиной труб L = 2 м, F = 23,0 м2.

4.2. Уточним значение критерия Рейнольд




Определим коэффициент теплоотдачи для паров аммиачной воды:

где m=0,8, а x=0,4

dв = 0,016м (внутренний диаметр труб)

Определим скорость течения воды в межтрубном пространстве:

Pr2 - критерий Прандтля для воды ( Pr2 = 6,12);

D - диаметр кожуха ( D = 400мм );

n - общее число труб ( n = 181 );

dн -наружный диаметр (dн = 0,020м).

м/с

Для определения критерия Рейнольдса для воды находим значения dэ:



Определим значение критерия Нюссельта:

где m=0,33, а n=0,

Найдем коэффициент теплоотдачи от стенки к охлаждающей воде:

В качестве материала труб используем нержавеющую сталь. Примем К=800Вт/м²·К.

Тогда необходимая поверхность теплообмена будет равна:
F=Q/K·∆T,
где Q- тепловая нагрузка на аппарат (Q=737100 Вт);

∆T – средняя температура теплоносителя (∆T=14,5С).



Из рассчитанной поверхности теплообмена мы видим, что теплообменник с диаметром кожуха 400 мм нам подходит. Выбираем кожухотрубчатый теплообменник со следующими параметрами:

D = 400 мм;

Диаметр труб - 20×2;

Длина труб – 6,0 м;

Поверхность теплообмена – 68 м²;

Общее количество труб – 181;

Определим запас поверхности:



Выбранный нами теплообменник имеет достаточный запас поверхности теплообмена (7%).

Масса теплообменника –1890

Расчет гидравлического сопротивления.

Определим скорость течения паров аммиачной воды в трубах:

где Sтр – площадь сечения одного хода по трубам



Коэффициент трения:

где - относительная шероховатость труб;

- высота выступов шероховатостей.



Диаметр штуцеров в распределительной камере dтр.ш = 0,1м, скорость горячего теплоносителя в штуцерах равна:



В трубном пространстве следующие местные гидравлические сопротивления: вход в камеру и выход из нее; вход в трубы и выход из них.

Таким образом, гидравлическое сопротивление в трубном пространстве равно:

где z- число ходов в теплообменнике; l- длина трубы.



Второе слагаемое принимаем равным нулю, так как теплообменник является одноходовым, следовательно, отсутствуют сопротивления поворотов между ходами.



В межтрубном пространстве число труб, омываемых потоком равно

Округляем в большую сторону, получим m = 8. Число сегментных перегородок равно x = 22. Диаметр штуцеров к кожуху dмтр.ш = 0,2м, скорость потока в штуцерах равно:

Скорость жидкости в наиболее узком месте межтрубного пространства площадью Sмтр=0,017м равна:

В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 14 поворотов через сегментные перегородки (по их числу ) и 23 сопротивлений трубного пучка при его поперечном обтекании ( ).

Сопротивление межтрубного пространства равно:





По результатам расчетов принимаем теплообменник D = 400 мм, 20х2, F = 68 м2, L = 6 м, n/z =181/1, масса 1890 кг.


Список использованных источников


  1. Логинов А.В. Процессы и аппараты химических и пищевых производств (пособие по проектированию) / А.В. Логинов, Н.М. Подгорнова, И.Н. Болгова. – Воронеж: ВГТА, – 2003. – 264 с.

  2. Павлов К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии: Учеб. пособ. для студ. химико-технол. спец. вузов / К.Ф. Павлов, П.Г. Романков, А.А. Носков; Под ред. П.Г. Романкова. – 8-е изд., перераб. и доп. – Л.: Химия, 1976. – 552 с.

  3. Лащинский А.А. Основы конструирования и расчета химической аппаратуры. Справочник / А.А. Лащинский, А.Р. Толчинский; Под ред. Н.Н. Логинова. – 2-е изд; перераб. и доп. – Л.: Машиностроение, 1970. – 753 с.

  4. Ю.И. Дытнерский, Г.С. Борисов, В.П. Брыков. Основные процессы и аппараты химической технологии: пособие по проектированию / Под ред. Ю.И. Дытнерского, 2-е изд., перераб. и допол. – М.: Химия, 1991. – 496 с.

  5. Насосы и насосные установки пищевых предприятий: Учеб. пособие / А.В. Логинов, М.Н. Слюсарев, А.А. Смирных. – Воронеж: ВГТА, 2001. – 226 с.

  6. А.Г Касаткин Основные процессы и аппараты химической технологии: Учебник для вузов.- 10-е изд., стереотипное, доработанное. Перепеч. С изд. 1973г.- М.: ООО ТИД "Альянс", 2004.-753с.


написать администратору сайта