Главная страница

Курс. Благодаря своему широкому применению, теория о нахождении кратчайших путей в последнее время интенсивно развивается


Скачать 44 Kb.
НазваниеБлагодаря своему широкому применению, теория о нахождении кратчайших путей в последнее время интенсивно развивается
Дата26.12.2018
Размер44 Kb.
Формат файлаdoc
Имя файлаКурс.doc
ТипДокументы
#61992


Введение


Благодаря своему широкому применению, теория о нахождении кратчайших путей в последнее время интенсивно развивается.

Исторически сложилось так, что теория графов зародилась двести с лишним лет назад именно в ходе решения головоломок. Очень долго она находилась в стороне от главных направлений исследований ученых, была в царстве.

Первая работа по теории графов, принадлежащая известному швейцарскому математику Л. Эйлеру, появилась в 1736 г. Толчок к развитию теория графов получила на рубеже ХIX и ХХ столетий, когда резко возросло число работ в области топологии и комбинаторика, Алгоритм на графах, изобретён нидерландским ученым Э. Дейкстрой в 1959 год его алгоритм был рассчитан для нахождения минимального пути положительных чисел, и был назван в его честь алгоритм Дейкстры.

Нахождение кратчайшего пути - жизненно необходимо и используется практически везде, начиная от нахождения оптимального маршрута между двумя объектами на местности, в системах автопилота, для нахождения оптимального маршрута при перевозках, коммутации информационного пакета в Internet и т.п. 

Теоретическая часть



Нахождение кратчайшего пути на сегодняшний день является жизненно необходимой задачей и используется практически везде, начиная от нахождения оптимального маршрута между двумя объектами на местности (например, кратчайший путь от дома до колледжа), в системах автопилота, для нахождения оптимального маршрута при перевозках, коммутации информационного пакета в сетях и т.п. Кратчайший путь рассматривается при помощи некоторого математического объекта, называемого графом. Поиск кратчайшего пути ведется между двумя заданными вершинами в графе. Результатом является путь, то есть последовательность вершин и ребер, инцидентных двум соседним вершинам, и его длина. Описываемый в данном разделе алгоритм позволяет находить в графе кратчайший путь между двумя выделенными вершинами s и t при положительных длинах дуг. Этот алгоритм, предложенный в 1959 г. Дейкстрой, считается одним из наиболее эффективных алгоритмов решения задачи. Алгоритм работает только для графов без рёбер отрицательного веса. Любая задача, требующая нахождения оптимальных маршрутов может быть выполнена с помощью алгоритма Дейкстры. Это касается и сетей, и транспортных потоков, и обработка графов.

Постановка задачи и сфера её применения



Основной задачей данного курсового проекта является программная реализация алгоритма поиска кратчайшего пути между двумя любыми вершинами графа.

Программа должна работать так, чтобы пользователь вводил количество вершин и длины рёбер графа, а после обработки этих данных на экран выводился кратчайший путь между двумя заданными вершинами и его длина. Необходимо предусмотреть различные исходы поиска, чтобы программа не выдавала ошибок и работала правильно.

Данная программа может использоваться в дискретной математике для исследования графов или в качестве наглядного пособия, демонстрирующего применение алгоритма Дейкстры на практике.




написать администратору сайта