Главная страница

Нейтрон. Частица нейтрино


Скачать 19.54 Kb.
НазваниеЧастица нейтрино
Дата26.04.2018
Размер19.54 Kb.
Формат файлаdocx
Имя файлаНейтрон.docx
ТипДокументы
#42287

Частица нейтрино

Нейтрино – это элементарная частица, которая очень похожа на электрон, но не имеет электрического заряда. Она обладает очень малой массой, которая может быть даже нулевой. От массы зависит и скорость нейтрино. Различие во времени прибытия частицы и света составляет 0,0006 % (± 0,0012 %). В 2011 г. в ходе эксперимента OPERA было установлено, что скорость нейтрино скорость света превышает, но независимый опыт этого не подтвердил.

Неуловимая частица

Это одна из наиболее распространенных частиц во Вселенной. Так как она очень мало взаимодействует с веществом, ее невероятно трудно обнаружить. Электроны и нейтрино не участвуют в сильных ядерных взаимодействиях, но и в равной степени принимают участие в слабых. Частицы, обладающие такими свойствами, называются лептонами. В дополнение к электрону (и его античастице позитрону), к заряженным лептонам относят мюон (200 масс электрона), тау (3500 масс электрона) и их античастицы. Их так и называют: электрон-, мюон- и тау-нейтрино. У каждого из них есть антиматериальная составляющая, называемая антинейтрино.

Мюон и тау, подобно электрону, имеют сопутствующие им частицы. Это мюон- и тау-нейтрино. Три типа частиц различаются друг от друга. Например, когда мюонные нейтрино взаимодействуют с мишенью, они всегда производят мюоны, и никогда тау или электроны. При взаимодействии частиц, хотя электроны и электрон-нейтрино могут создаваться и уничтожаться, их сумма остается неизменной. Этот факт приводит к разделению лептонов на три вида, каждый из которых обладает заряженным лептоном и сопровождающим его нейтрино.

Для обнаружения этой частицы необходимы очень большие и чрезвычайно чувствительные детекторы. Как правило, нейтрино с низким уровнем энергии будут путешествовать в течение многих световых лет до взаимодействия с веществом. Следовательно, все наземные эксперименты с ними полагаются на измерении их малой доли, взаимодействующей с регистраторами разумных размеров. Например, в нейтринной обсерватории в Садбери, содержащей 1000 т тяжелой воды, через детектор проходит около 1012 солнечных нейтрино в секунду. А обнаруживается только 30 в день.

История открытия

Вольфганг Паули первым постулировал существование частицы в 1930 г. В то время возникла проблема, потому что казалось, что энергия и угловой момент не сохраняются при бета-распаде. Но Паули отметил, что если будет излучаться не взаимодействующая нейтральная частица нейтрино, то закон сохранения энергии будет соблюден. Итальянский физик Энрико Ферми в 1934 развил теорию бета-распада и дал частице ее имя.

Несмотря на все предсказания, в течение 20 лет нейтрино не могли обнаружить экспериментально из-за его слабого взаимодействия с веществом. Так как частицы электрически не заряжены, на них не действуют электромагнитные силы, и, следовательно, они не вызывают ионизацию вещества. Кроме того, они вступают в реакцию с веществом только через слабые взаимодействия незначительной силы. Поэтому они являются наиболее проникающими субатомными частицами, способными проходить через огромное число атомов, не вызывая никакой реакции. Только 1 на 10 миллиардов этих частиц, путешествуя через материю на расстояние, равное диаметру Земли, вступает в реакцию с протоном или нейтроном .

Наконец, в 1956 году группа американских физиков во главе с Фредериком Райнесом сообщила об открытии электрон-антинейтрино. В ее экспериментах антинейтрино, излучаемые ядерным реактором, взаимодействовали с протонами, образуя нейтроны и позитроны. Уникальные (и редкие) энергетические сигнатуры этих последних побочных продуктов стали доказательствами существования частицы. Открытие заряженных лептонов мюонов стало отправной точкой для последующей идентификации второго вида нейтрино – мюонных. Их идентификация была проведена в 1962 году на основе результатов эксперимента в ускорителе частиц. Высокоэнергетические мюонные нейтрино образовывались путем распада пи-мезонов и направлялись на детектор таким образом, чтобы можно было изучить их реакции с веществом. Несмотря на то что они являются нереакционноспособными, как и другие типы этих частиц, было обнаружено, что в тех редких случаях, когда они реагировали с протонами или нейтронами, мюон-нейтрино образуют мюоны, но никогда электроны. В 1998 г. американские физики Леон Ледерман, Мелвин Шварц и Джек Штейнбергер получили Нобелевскую премию по физике за идентификацию мюон-нейтрино. В середине 1970 годов физика нейтрино пополнилась еще одним видом заряженных лептонов – тау. Тау-нейтрино и тау-антинейтрино оказались связанными с этим третьим заряженным лептоном. В 2000 году физики в Национальной ускорительной лаборатории им. Энрико Ферми сообщили о первых экспериментальных доказательствах существования этого типа частиц.

Масса

Все типы нейтрино обладают массой, которая гораздо меньше, чем у их заряженных партнеров. Например, эксперименты показывают, что масса электрон-нейтрино должна быть меньше 0,002 % массы электрона и что сумма масс трех разновидностей должна быть меньше 0,48 эВ. В течение многих лет казалось, что масса частицы равна нулю, хотя не было никаких убедительных теоретических доказательств, почему это должно быть именно так. Затем, в 2002 году, в Нейтринной обсерватории в Садбери было получено первое прямое доказательство того, что электрон-нейтрино, испускаемые ядерными реакциями в ядре Солнца, пока они проходят сквозь него, изменяют свой тип. Такие «осцилляции» нейтрино возможны, если один или несколько видов частиц обладают некоторой малой массой. Их исследования при взаимодействии космических лучей в атмосфере Земли также свидетельствуют о наличии массы, но требуются дальнейшие эксперименты, чтобы более точно ее определить.

Источники

Естественные источники нейтрино – это радиоактивный распад элементов в недрах Земли, при котором испускается большой поток низкоэнергетических электронов-антинейтрино. Сверхновые тоже являются преимущественно нейтринным явлением, поскольку только эти частицы могут проникать сквозь сверхплотный материал, образующийся в коллапсирующей звезде; лишь малая часть энергии преобразуется в свет. Расчеты показывают, что около 2 % энергии Солнца – это энергия нейтрино, образованных в реакциях термоядерного синтеза. Вполне вероятно, что большая часть темной материи Вселенной состоит из нейтрино, образовавшихся во время Большого взрыва.

Новая астрономия

Поскольку нейтрино так слабо взаимодействуют, они могут путешествовать на огромные расстояния. Они дают нам возможность заглянуть в места, которые иначе мы бы никогда не увидели. Нейтрино, обнаруженные Дэвисом, образовывались в результате ядерных реакций, которые проходили в самом центре Солнца, и смогли покинуть это невероятно плотное и горячее место только потому, что они почти не взаимодействуют с другой материей. Можно даже обнаружить нейтрино, летящее из центра взорвавшейся звезды на расстоянии более ста тысяч световых лет от Земли. Кроме того, эти частицы позволяют наблюдать Вселенную в ее очень малых масштабах, намного меньших, чем те, в которые может заглянуть Большой адронный коллайдер в Женеве, обнаруживший бозон Хиггса. Именно по этой причине Нобелевский комитет решил присудить Нобелевскую премию за открытие нейтрино еще одного типа.

Трехликая частица

Согласно теории осцилляции нейтрино, в природе существует три их различных типа. Если частица обладает массой, то по мере движения она может переходить из одного типа в другой. Три вида – электронный, мюонный и тау – при взаимодействии с веществом могут преобразовываться в соответствующую заряженную частицу (электрон, мюон или тау-лептон). «Осцилляция» происходит благодаря квантовой механике. Тип нейтрино не постоянен. Он меняется с течением времени. Нейтрино, начавшее свое существование как электронное, может превратиться в мюонное, а затем обратно. Таким образом, частица, образованная в ядре Солнца, по дороге к Земле может периодически превращаться в мюон-нейтрино и наоборот. Поскольку детектор Дэвиса мог обнаружить только электрон-нейтрино, способное привести к ядерной трансмутации хлора в аргон, то казалось возможным, что недостающие нейтрино превратились в другие типы. (Как оказалось, нейтрино осциллируют внутри Солнца, а не на пути к Земле).

Переворот в науке

Это все экзотично и удивительно, но почему осцилляции и массы нейтрино привлекают к себе столько внимания? Причина проста. В стандартной модели физики элементарных частиц, разрабатывавшейся на протяжении последних пятидесяти лет двадцатого века, которая правильно описывала все остальные наблюдения в ускорителях и других экспериментах, нейтрино должны были быть безмассовыми. Открытие массы нейтрино говорит о том, что чего-то не хватает. Стандартная модель не является полной. Недостающие элементы еще предстоит открыть – с помощью Большого адронного коллайдера или другой, еще не созданной машины.


написать администратору сайта