Главная страница
Навигация по странице:

  • Основные функции электрических машин

  • Тема: что такое машины электрического тока, их особенности и виды.

  • Тема: особенности и работа электрических машин постоянного тока.

  • Тема: особенности и работа электрических машин переменного тока.

  • Тема: работа и принцип действия асинхронных электрических машин.

  • Тема: работа и принцип действия синхронных электрических машин.

  • 2. Электрические машины. Что такое электрическая машина, общие сведения и понятия


    Скачать 204.83 Kb.
    НазваниеЧто такое электрическая машина, общие сведения и понятия
    Дата09.02.2022
    Размер204.83 Kb.
    Формат файлаdocx
    Имя файла2. Электрические машины.docx
    ТипЛекции
    #356778

    ЛЕКЦИИ ПО ТЕМЕ «ЭЛЕКТРИЧЕСКИЕ МАШИНЫ»

    ТЕМА: ЧТО ТАКОЕ ЭЛЕКТРИЧЕСКАЯ МАШИНА, ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ.

      Что обычно представляет человек, когда он слышит выражение — электрические машины? Пожалуй, это что-то движущиеся и работающее от электричества. Всё верно. Следовательно, электрические машины — электромеханические устройства, которые способны преобразовывать электрическую энергию в механическую и обратно. Думаю, Вам не трудно будет догадаться, какие устройства можно отнести к электрическим машинам — это все виды электродвигателей, электрогенераторов и трансформаторов (о них особый разговор).

       Большинству людей живущим в наше время хорошо известно: электродвигателя представляют собой устройства, которые начинают и продолжают вращаться при подсоединении к ним электрических проводов и подачи на них напряжения (то есть, пропускании через внутреннюю катушку самого двигателя электрического тока). Электрогенераторы, в общем, это те же электродвигатели, только они сами начинают вырабатывать электричество, если их начать и продолжать принудительно вращать, тем самым механику превращать в электрику.

     В основе работы электрических машин лежат два физических явления: это воздействие силы Лоренса и проявление электромагнитной индукции, что действуют на проводник с электрическим током, перемещающегося в магнитном поле. Теперь более простыми словами — что бы понять принцип действия и работу электрических машин давайте заглянем внутрь процессов.

     Как мы помним из школьной физики и химии, металл в твёрдом состоянии представляет собой множество мельчайших частичек (атомов) держащихся друг за друга под воздействием внутренних полей (которым обладает каждый атом в отдельности). Каждый атом состоит из ядра (кучка протонов и нейронов) вокруг которого по орбитам носятся малюсенькие электрончики. Именно в металлах электроны, которые расположены дальше всех от ядра могут легко отрываться и перелетать на соседние атомы. Такие электроны называются свободными.

     Каждый электрон имеет вокруг себя поля (электрические и магнитные). Поля служат неким посредником при взаимодействии друг с другом электронов. То есть, поля двух электронов будут отталкиваться друг от друга, не давая возможности приблизиться этим электронам на более близкое расстояние. А если этих электронов много, то и сила их отталкивания будет значительной. Стоит добавить, наиболее эффективным полем для использования в электрических машинах является магнитное. Оно существует вокруг движущихся электронов и в постоянном магните (о работе магнита будет отдельная статья).

     

     Подводим итог, есть металл в виде проволоки, в нём существует множество свободных электронов, каждый электрон имеет вокруг себя поля. Если взять обычный постоянный магнит, вокруг которого на некотором расстоянии имеется магнитное поле и приблизить к проволоке, то поле магнита подействует на поля каждого из электронов. В результате наше механическое движение с магнитом превратится в электрическое движение электронов внутри проволоки (принцип электрогенератора). И на оборот, если пропустить электроток по проводу, то возникшее магнитное поле вокруг медной проволоки будет отталкивать наш постоянный магнит в наших руке (принцип электродвигателя).

     Теперь что касается трансформатора. Трансформатор, по идеи, нельзя назвать электрической машиной, поскольку он не использует в своей основной работе механических движений и не соответствует нашей формулировке. Как мы знаем, трансформатор преобразует электрический ток и напряжение в магнитное поле (магнитный поток в сердечнике), а потом наоборот.

     Однако внутренние электромагнитные процессы, что протекают в них, полностью аналогичны тем, которые происходят при работе электрических машин. Кроме этого, как трансформаторам, так и электрическим машинам свойственна единая природа электромагнитных и энергетических процессов, присутствующих при работе проводника с током и магнитного поля. Поэтому трансформаторы принято относить к электрическим машинам.

     Основные функции электрических машин:

    · преобразование энергии — в качестве двигателя или генератора;

    · преобразование величины напряжения;

    · преобразование переменного тока в постоянный;

    · повышение коэффициента мощности электрических установок;

    · усиление мощности электрических сигналов.

     Тема: что такое машины электрического тока, их особенности и виды.

     Все электрические машины можно разделить, с учётом иерархии, на два больших класса — коллекторные и бесколлектроные. Коллекторыне делаться на машины постоянного электрического тока и универсальные. В ту очередь, когда бесколлектроные машины делятся на синхронные и асинхронные. Думаю эти слова многим и ранее были знакомы на слух. По принципу непосредственного действия электромашины делятся так:

     1. Асинхронная электрическая машина — машина, электрического типа, переменного тока, где роторная частота вращения в некоторой степени отлична от вращающейся частоты электромагнитного поля в зазоре на некоторую частоту скольжения (воздушный зазор между ротором и статором).

    2. Синхронная машина электрическая — машина, электрического типа, переменного тока, где вращающиеся частоты магнитного поля и ротора в зазоре полностью совпадают.

    3. Электрическая машина двойного электропитания — машина, электрического типа, переменного тока, где статор и ротор имеют разные частоты (в общем случае) питающего тока. В итоге ротор машины движется с частотой вращения, приравненной сумме (либо же разности) питающих частот.

    4. Электрическая машина постоянного тока — машина, имеющая коллектор и питаемая постоянным током. Наиболее распространённый и используемый вид.

    5. Электрический трансформатор — аппарат переменного электрического тока (преобразователь), обращающий напряжение и силу тока одного номинала в напряжения и ток иного номинала. Бывают поворотные и статические электрические трансформаторы.

    6. Инвертор (умформер, преобразователь на базе электромашины) — обычно, это две электрические машины, которые между собой соединены валом (редуктором), совершающих трансформацию определённого рода тока (переменный, в постоянный либо же наоборот), частоты электрического тока, напряжения, числа фаз.

    7. Вентильный электродвигатель — машина, электрического типа, постоянного тока, где в место механического коллектора установлен полупроводниковый коммутатор, возбуждение машины происходит от имеющихся постоянных магнитов, установленных на роторе, а статорная обмотка машины, такая же как в синхронной электрической машине. Полупроводниковый коммутатор по сигналам цифровой системы поочерёдно, в заданной последовательности, попарно включает электрические фазы двигателя к постоянному источнику тока, тем самым образовывая вращающееся электромагнитное поле статора, что, взаимодействуя с магнитным полем магнита (постоянного) ротора, порождает вращающий момент электрическому двигателю.

    8. Сельсин — машина, служащая для дистанционной передачи угла поворота (информации о нём). Принцип действия основан на балансе электромагнитных сил.

     Тема: особенности и работа электрических машин постоянного тока.

      Электромашина постоянного тока представляет собой электротехническое устройство, главная особенность которого выражается в различных способах преобразования электрической энергии постоянного тока в механическую энергию (с естественным выделением тепла), либо же наоборот, механическая энергия трансформируется в электроэнергию постоянного тока. Следует учесть, что данный тип электромашин имеет способность к обратимости процессов. Работа данного вида электрических машин, естественно проходит через явления электромагнитных преобразований. То есть, к примеру, в режиме работы электродвигателя электроэнергия постоянного тока образуя и взаимодействуя с магнитными полями в результате порождает механическое движение (процесс вращения вала двигателя).

     В силу того, что устройство, конструкция, характеристики, принцип действия, физические процессы в работе устройств переменного тока и постоянного во многом различны, то следовательно и электрические машины постоянного тока имеют свои конструктивные особенности. Самой простой моделью электромашины постоянного тока является следующая электротехническая система: имеется статор, который выступает в роли неподвижной и опорной части устройства, есть ротор, что выполняет роль подвижного элемента машины. Вряд ли найдётся человек, в детстве не разбиравший обычный электромотор от собственноручно сломанной детской машинки. Внутри него были постоянные магниты, расположенные на внутренней части основания мотора (это и есть статор). Внутри статора находился ротор, имевший вид железного сердечника с намотанной на нём медной проволокой, концы которых припаяны к контактным лепесткам. Эта контактная часть называется коллектором.

     

     Итак, электрические машины постоянного тока при поступлении на них тока (постоянного) начинают вращаться. Это происходит потому, что заряженные частицы поступают на входные контакты и передаются через коллектор на обмотку двигателя, вокруг неё образуется электромагнитное поле. Вокруг постоянных магнитов, расположенных на статоре движка, также имеется своё поле. Естественно, одно поле стремится оттолкнуться или притянутся друг к другу (в зависимости от полюсов). В итоге сила взаимодействующих полей разворачивает подвижную часть электромашины на определённый угол. При вращении на коллекторе происходит смена электрических полюсов, что даёт новый толчок отталкивания магнитных полей ротора и статора. Вот и постоянное движение.

    Подав на подобный электродвигатель переменное напряжение вышеописанного процесса не последует. Двигатель просто будет гудеть и греться, что приведёт его к поломке. Это происходит потому, что полюса переключаются быстро, а это ведёт к взаимному гашению магнитных сил. Только изменив принципиальную конструкцию можно добиться работоспособности этой электрической машины, сделав из ней машину переменного тока.

     

     Электрические машины постоянного тока могут работать и как генераторы электроэнергии. Если в режиме работыдвигателя устройство машины движется за счёт толкания полей, первопричиной чему является движение зараженных частиц в обмотке ротора, то если начать вращать вал электрической машины, получим обратный эффект. Внутри медной обмотки имеются свободные электроны, которые в проводящем материале располагаются хаотичным образом, и вокруг которых существует своё электромагнитное поле. При вращении ротора, а следовательно и перемещая медную катушку в магнитном поле постоянных магнитов, мы воздействуем на свободные электроны внутри меди. Это заставляет их упорядочиваться и начинать движение (если электрическая цепь замкнута). Если цепь разомкнута, то при механическом движении вала электрической машины постоянного тока на еёклеммах будет возникать постоянное напряжение определённой величины.

     

    Тема: особенности и работа электрических машин переменного тока.

      Из самого названия понятно, что отличительной особенностью данного рода электрических машин является то, что они функционируют на переменном токе. Если при постоянном токе электрические заряженные частицы перемещаются только в одном направлении, и могут в определённом диапазоне менять свою интенсивность (величина разности потенциалов, напряжение), то у переменного тока появляются новые характеристики — такие как частота, её форма и т.д. Что естественным образом влияет на непосредственную конструкцию и принцип действия электрической машины. В статье разберём основные особенности и работу электрических машин переменного тока.

     Электромашины переменного тока представляют собой электротехнические устройства, которые являются своеобразными преобразователями электрической энергии, в основе принципа действия которых лежат силы Лоренца и явление электромагнитной индукции, работающие на переменном токе. К таким электромашинам относятся много разновидностей — электродвигатели, электрогенераторы, сельсины, трансформаторы. Итак, двигатели и генераторы по принципу действия разделяются на синхронные и асинхронные. Что бы было ясно дальнейшее объяснение хочу сказать о следующем.

     

     Главной особенностью электрических машин переменного тока, что электрическую энергию преобразуют в механическую или наоборот, является взаимодействие магнитных полей, одно из которых является вращающимся, динамическим (получаемое в силу работы переменного тока — циклические изменения силы тока и напряжения, как по величине, так и по полюсам), а другое поле в определённом смысле статическое, постоянное. Следовательно, для получения движения ротора движущееся магнитное поле должно действовать на постоянное поле, что и порождает механическое движение вала машины. Это ближе к электродвигателям, у генераторов работа проходит по иному принципу. Есть два различных принципа работы переменных электромашин (двигателей и генераторов) — синхронные и асинхронный.

     Общий принцип работы асинхронной электрической машины переменного тока заключается в следующем. Разберём классический вариант трёхфазника. Имеются на статоре три обмотки, к которым подключают три электрические фазы. Из электротехники известно, что трёхфазный ток представляет собой циклическое изменение величин тока и напряжения плавно перетекающее по кругу (обычная плавно меняющаяся синусоида). То есть, максимум электрической мощности плавно переходит из одной точки, обмотки в другую, естественно на противоположной стороне круга будет минимум мощности. Так вот при подачи трёхфазного напряжения на три обмотки статора асинхронного электродвигателя мы имеем вращающееся магнитное поле, частота которой равна 50 Гц (стандартная производственная частота).

     

     Из электрофизики также известно, что при помещении электрического проводника в переменное магнитное поле на его концах появляется разность потенциалов, а если его замкнут (соединить концы), потечёт ток, который образует вокруг себя своё магнитное поле. Вот это и используется в асинхронных электрических машинах. Внутри машины расположен короткозамкнутый ротор (является упрощённой обмоткой). Во вращающемся магнитном поле на нём наводится ЭДС и у него появляется собственное магнитное поле, что и отталкивается от поля статора. Учтите, что поле на короткозамкнутом роторе может возникнуть только в силу некоторого отставания одного поля от другого, по этому и называются эти машины асинхронными.

     У синхронных машин подобного отставания нет. Там поле индуктора (статического, постоянного магнитного поля) как бы цепляется за вращающееся поле якоря (подвижное, динамическое поле), что и ведёт к синхронной работе магнитных полей. Если в асинхронниках статическое поле является следствием работы динамического, то в синхронниках в определённом смысле причины появления вращающегося полями и поля статического независимы друг от друга, но их взаимодействие и позволяет осуществлять работу электрической машины переменного тока.

     Тема: работа и принцип действия асинхронных электрических машин.

     

     На производстве в качестве основной движущей силы для различных электротехнических машин и устройств широко используют асинхронные электрические двигатели. А почему они получили такое распространение и в чём их конструктивные особенности? В этой теме давайте с вами разберёмся, что вообще собой представляет данное электротехническое устройство, какой основной принцип его действия и работа. Для начала заметим, что само слово асинхронность другими словами можно выразить как разновременность нескольких действие, движений, работ (синхронность — это одновременность).

     В целом принцип действия асинхронной машины электрической очень прост. Для начала нам следует вспомнить уроки физики из раздела по основам электричества. Итак, существуют два важных явления, благодаря которым и работает асинхронная электрическая машина. Во-первых, если электрический проводник движется в магнитном поле (или само магнитное поле перемещается относительно неподвижного проводника), то на его концах возникает напряжение (если цепь замкнута, то начинает течь электрический ток в этом проводнике). Во-вторых, при протекании электрического тока по проводнику вокруг него образуется своё магнитное поле.

     

     Теперь посмотрим, как эти явления соотносятся с асинхронными электрическими машинами (их непосредственной работой). Итак, классическим вариантом асинхронника является трёхфазный двигатель. Он состоит из статора (неподвижная часть электродвигателя) и ротора (подвижной части движка). Статор (основание, корпус) внутри имеет обмотки, которые соединены таким образом, что от них выходит три электрических вывода (сам металлический корпус заземляется четвёртым проводом) прикрученные на клеммник двигателя. На эти обмотки подаётся трёхфазное напряжение, что приводит к образованию внутри статора вращающегося магнитного поля. Вспоминаем, как действует движущееся магнитное поле на электрический проводник!

     Ротор у асинхронной электрической машины (асинхронного электродвигателя) короткозамкнутый. Он представляет собой металлический сердечник, в пазы которого залит алюминий. То есть, это своего рода одновитковые обмотки между пазами сердечника (это и есть электрический проводник). Следовательно, в момент появления вращающегося магнитного поля, что индуцируется статорными обмотками, в короткозамкнутом роторе наводится ЭДС (электродвижущая сила, напряжение) и возникает течение тока внутри алюминиевого проводника. Что, в свою очередь, порождает своё магнитное поле вокруг ротора асинхронной электрической машины.

     

     В результате вращающееся магнитное поле статорных обмоток начинает взаимодействовать с магнитным полем ротора, появившегося вокруг него. Это приводит к вращательному движению оси электродвигателя. В этом случае, как можно понять, возникает асинхронность в работе магнитных полей электрической машины. То есть, только при условии небольшого отставания скорости вращения ротора от магнитного поля статора возможно образование на роторе своего магнитного поля. Если это условие нарушится (скорость будет одинаковой) то получится, что проводник (короткозамкнутый ротора) уже не будет передвигаться относительно магнитного поля статора, а это приведёт к отсутствию эффекта образования собственного магнитного поля ротора. Поэтому такие электрические машины и называются асинхронными.

     

    Тема: работа и принцип действия синхронных электрических машин.

      Не смотря на научно-техническое название, работа и устройство электрической синхронной машины очень просто. В принципе, из самого названия должно быть ясно, что в основе лежит синхронная работа. Поскольку главными элементами в электрической машине являются именно магнитные поля, как сила взаимодействия, то и синхронность относится именно к ним. А как именно это происходит внутри самой машины мы увидим дальше, по ходу описания принципа действия и работы синхронных машин электрических. Существует и другой вид электромашин, с обратным принципом работы, асинхронные электрические машины, но о их мы рассмотрим в другой статье.

     Итак, рассмотрим синхронные машины электрические на примере работы электродвигателя. Для обеспечения постоянного вращения двигателя ему нужны силы, которые также постоянно отталкивались бы друг от друга, тем самым совершая беспрерывное вращение. Одной такой силой является вращающееся магнитное поле «якоря», что образуется в результате циклического хождения электрической энергии переменного тока по имеющийся внутри электрической машины катушкам. На практике повсеместно используется трёхфазное напряжение, ток. Его смысл заключается в том, что величина электрической энергии делится на три части, каждая из которых друг от друга отстаёт на угол в 120 градусов.

     

     Иными словами говоря, есть статор электродвигателя (неподвижная часть синхронной электрической машины), на котором имеются, допустим, три обмотки, равноудалённых друг от друга. При подключении к этим трём катушкам трёх электрических фаз (и подачи напряжения) внутри статора будет образовываться и действовать вращающееся магнитное поле (переменный ток изменяющейся циклически и будет это делать). Естественно, если на роторе сделать катушку, которая будет иметь постоянные магнитные полюса (или вовсе поставить на ротор постоянный магнит — это делается на маломощных синхронных электрических машинах), то эти магнитные полюса будут «зацепляться» за вращающееся поле якоря, что и вызовет синхронный режим работы электрической машины.

     Что бы было понятнее представьте себе обычные шестерёнки. Обмотка статора образует вращающееся магнитное поле, у которого форма похожа на зубья шестерёнки, расположенных во внутрь. Именно такую форму имеет вращающееся магнитное поле якоря. Внутрь этой магнитной шестерёнки помещается плоская пластина, которая своими сторонами зацепляется за внутренние магнитные зубья нашей магнитной шестерёнки. Ротор с индукторной катушкой и является таким плоским предметом. В результате вращающееся магнитное поле просто зацепляет поле индукторной катушки и заставляет вращаться ротор. При нормальной своей работе частота вращения вращающегося поля якоря полностью совпадает с частотой вращения ротора, имеющего индукторную катушку с постоянным полем. Поэтому и называют такие электрические машины синхронными.

     

     Это описание позволит вам понять саму суть синхронных электрических машин, их принцип действия и работу, хотя разновидностей конструкций, вариантов исполнения имеется множество, что может сильно отличатся от приведённого классического устройства. Когда мы разберём в другой статье устройство и работу асинхронной машины, вы поймёте принципиальную разницу. Пока что будет достаточно и этой информации. Разве что хотелось заметить, что индуктор — это обмотка электрической машины, которая имеет постоянное поле вокруг себя, а якорь — это обмотка электромашины, в которой возникает переменное, вращающееся магнитное поле.

     

     


    написать администратору сайта