Главная страница
Навигация по странице:

  • Молодые звёзды малой массы

  • Молодые звёзды промежуточной массы

  • Молодые звёзды с массой больше 8 солнечных масс.

  • Главная последовательность.

  • Финальная стадия.

  • Звёзды среднего размера.

  • Сверхмассивные звёзды.

  • Нейтронные звёзды

  • Эволюция звёзд (реферат). Эволюция звёзд. Эволюция звёзд


    Скачать 0.7 Mb.
    НазваниеЭволюция звёзд
    АнкорЭволюция звёзд (реферат
    Дата03.01.2023
    Размер0.7 Mb.
    Формат файлаdoc
    Имя файлаЭволюция звёзд.doc
    ТипДокументы
    #871505

    Эволюция звёзд
    З
    везда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием собственного тяготения. Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационное сжатие облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. Так или иначе, любые неоднородности в силах, действующих на массу облака, могут вызвать гравитационную неустойчивость и запустить процесс образования звезды.

    По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина – на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается, и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро массой порядка 1 % от массы облака. Этот момент невидим – глобула непрозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды – то аккреция продолжающего падать на «поверхность» ядра вещества, которое за счёт этого растёт в размерах. В конце концов масса свободно перемещающегося в облаке вещества исчерпывается, и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды.

    Молодые звёзды малой массы по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

    В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звёздного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

    По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы вместе с внутренним давлением газа уравновесить гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем её образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба – постоянное сжатие, пока давление вырожденного газа не остановит его, и затем постепенное остывание с прекращением всех начавшихся термоядерных реакций.

    Молодые звёзды промежуточной массы качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

    Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

    Молодые звёзды с массой больше 8 солнечных масс. Звезды с такими массами уже обладают характеристиками нормальных звёзд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака.

    Главная последовательность. Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

    Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

    Зрелость. По прошествии определённого времени – от миллиона до десятков миллиардов лет (в зависимости от начальной массы) – звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к прекращению термоядерной реакции.

    Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

    Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Размер звезды увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

    Финальная стадия.

    Старые звёзды с малой массой. Современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

    Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры.

    Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, – масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

    Звёзды среднего размера. При достижении звездой средней величины фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия. Этот процесс идёт при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

    Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»). Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров.

    Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре такой туманности остаётся оголённое ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных масс и диаметр порядка диаметра Земли.

    Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьёзную перестройку тела звезды и её быстрое перемещение по диаграмме Герцшпрунга – Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы.

    Ядро звезды может закончить свою эволюцию как:

    - белый карлик (маломассивные звёзды);

    - как нейтронная звезда (пульсар), если масса звезды на поздних стадиях эволюции превышает предел Чандрасекара (1,38 – 1,44 массы Солнца);

    - как чёрная дыра, если масса звезды превышает предел Оппенгеймера – Волкова (2,01 – 2,17 массы Солнца).

    В двух последних ситуациях эволюция звёзды завершается катастрофическим событием – вспышкой сверхновых.

    Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится невидимым чёрным карликом.

    У звёзд более массивных, чем Солнце, давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра, что превращает протоны в нейтроны, между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

    Сверхмассивные звёзды. После того как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются всё более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

    В результате по мере образования всё более тяжёлых элементов Периодической системы, из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

    Происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности.

    Нейтронные звёзды - чрезвычайно малы – не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

    Чёрные дыры. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь. После этого звезда становится чёрной дырой.

    Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях.


    написать администратору сайта