1.Гипотезы происхождения Земли. Форма, размеры и строение земного шара
Скачать 1 Mb.
|
Форма, размеры и строение земного шара Земля имеет сложную конфигурацию. Ее форма не соответствует ни одной из правильных геометрических фигур. Говоря о форме земного шара, считают, что фигура Земли ограничивается воображаемой поверхностью, совпадающей с поверхностью воды в Мировом океане, условно продолженной под материками таким образом, чтобы отвесная линия в любой точке земного шара была перпендикуляром к этой поверхности. Такую форму называют геоидом, т.е. формой, свойственной только Земле. Изучение формы Земли имеет довольно длинную историю. Первые предположения о шарообразной форме Земли принадлежат древнегреческому ученому Пифагору (571-497 гг. до н.э.). Однако научные доказательства шарообразности планеты были приведены Аристотелем (384-322 гг. до н.э.),первым объяснившим природу лунных затмений как тень Земли. В 18 веке И.Ньютон (1643-1727 гг.) рассчитал, что вращение Земли обуславливает отклонение ее формы от точного шара и придает ей некоторцю сплюстнутость у полюсов. Причиной этого является центробежная сила. Определение размеров Земли тоже издавна занимало умы человечества. Впервые размеры планеты рассчитал александрийский ученый Эратосфен Киренский (около 276-194 гг. до н.э.): по его данным радиус Земли составляет около 6290 км. В 1024-1039 гг. н.э. Абу Рейхан Бируни вычислил радиус Земли, оказавшийся равным 6340 км. Впервые точное вычисление формы и размеров геоида было произведено в 1940 году А.А.Изотовым. Рассчитанная им фигура названа в честь известного русского геодезиста Ф.Н.Красовского эллипсоидом Красовского. Эти вычисления показали, что фигура Земли представляет собой трехосный эллипсоид и отличается от эллипсоида вращения. По данным измерений, Земля - сплюснутый с полюсов шар. Экваториальный радиус (большая полуось эллипслида - а) равен 6378 км 245 м, полярный радиус (малая полуось - б) составляет 6356 км 863 м. Разница между экваториальным и полярным радиусами равна 21 км 382 м. Сжатие Земли (отношение разности между а и б к а) составляет (а-б)/а=1/298,3. В тех случаях, когда не требуется большая точность, средний радиус Земли принимают равным 6371 км. Современные измерения показывают, что поверхность геоида несколько превышает 510 млн.км , а объем Земли составляет примерно 1,083 млрд. км . Определение других характеристик Земли - массы и плотности - производится на основании фундаментальных законов физики.Так масса Земли равна 5,98*10 т.Значение средней плотности оказалось равным 5,517 г/см . Общее строение Земли К настоящему времени по сейсмологическим данным в Земле выделяют около десяти границ раздела, свидетельствующих о концентрическом характере ее внутреннего строения. Основными из этих границ являются: поверхность Мохоровичича на глубинах 30-70 км на континентах и на глубинах 5-10 км под дном океана; поверхность Вихерта - Гутенберга на глубине 2900 км. Эти основные границы делят нашу планету на три концентрические оболочки - геосферы: Земную кору - внешнюю оболочку Земли, расположенную над поверхностью Мохоровичича; Мантию Земли - промежуточную оболочку, ограниченную поверностями Мохоровичича и Вихерта - Гутенберга; Ядро Земли - центральное тело нашей планеты, расположеное глубже поверхности Вихерта - Гутенберга. Кроме основных границ выделяют ряд второстепенных поверхностей внутри геосфер. Земная кора. Эта геосфера составляет небольшую долю от общей массы Земли.По мощности и составу выделяют три типа земной коры: . Континентальная кора характеризуется максимальной мощностью, достигающей 70 км. Она состомт из магматических, метаморфических и осадочных горных пород, которые образуют три слоя. Мощность верхнего слоя (осадочные) обычно не превышает 10-15 км. Ниже залегает гранитно-гнейсовый слой мощностью 10-20 км. В нижней части коры залегает бальзатовый слой мощностью до 40 км. . Океаническая кора характеризуется небольшой мощностью - снижающейся до 10-15 км. Она так же состоит из 3 слоев. Верхний, осадочный, не превышает нескольких сот метров. Второй, бальзатовый, общей мощностью 1,5-2 км. Нижний слой океанической коры достигает мощности 3-5 км. В составе данного типа земной коры отсутствует гранитно-гнейсовый слой. . Кора переходных областей обычно характерна для периферии крупных континентов, где развиты окраинные моря, имеются архипелаги островов. Здесь происходит замена континентальной коры на океаническую и, естественно, по строению, мощности и плотности пород кора переходных областей занимает промежуточное место между указаными выше двумя типами кор. Мантия Земли. Эта геосфера является самым крупным элементом Земли - она занимает 83% ее объема и составляет около 66% ее массы. В составе мантии выделяют ряд границ раздела, основными из которых являются поверхности, залегающие на глубинах 410, 950 и 2700 км. По значениям физических параметров эта геосфера делится на две субоболочки: . Верхняя мантия (от поверхности Мохоровичича до глубины 950 км). . Нижняя мантия (от глубины 950 км до поверхности Вихерта - Гутенберга). Верхняя мантия в свою очередь подразделяется на слои. Верхний, залегающий от поверхности Мохоровичича до глубины 410 км, называется слоем Гутенберга. Внутри этого слоя выделяют жесткий слой и астеносферу. Земная кора вместе с твердой частью слоя Гутенберга образует единый жесткий слой, лежащий на астеносфере, который называется литосферой. Ниже слоя Гутенберга залегает слой Голицина. Который иногда называют средней мантией. Нижняя мантия имеет значительную мощность, почти 2 тыс км, и состоит из двух слоев. Ядро Земли. Центральная геосфра Земли занимает около17% ее объема и составляет 34% е массы. В разрезе ядра выделяют две границы - на глубинах 4980 и 5120 км. В связи с чем оно подразделяется на три элемента: . Внешнее ядро - от поверхности Вихерта - Гутенберга до 4980 км. Это вещество, находящееся высоких давлений и температур, не является жидкостью в обычном понимании. Но обладает некоторыми ее свойствами. . Переходная оболочка - в интерваде 4980-5120 км. . Субъядро - ниже 5120 км. Возможно, находится в твердом состоянии. Химический состав Земли схож с составом других планет земной группы Различают три оболочки Земли: · литосфера (кора и самая верхняя часть мантии) · гидросфера (жидкая оболочка) · атмосфера (газовая оболочка) Водой покрыто около 71% поверхности Земли, средняя её глубина примерно 4 км. Атмосфера Земли: более чем на 3/4 - азот (N2); примерно на 1/5 - кислород (О2). Содержание аргона, углекислого газа, паров воды и остальных газов очень мало. Облака, состоящие из мельчайших капелек воды, закрывают примерно 50% поверхности планеты. Атмосферу нашей планеты, как и её недра, можно разделить на несколько слоёв. · Самый нижний и плотный слой называется тропосферой. Здесь находятся облака. · Метеоры зажигаются в мезосфере. · Полярные сияния и множество орбит искусственных спутников - обитатели термосферы. Там же парят призрачные серебристые облака. Гипотезы происхождения Земли. Первые космогонитические гипотезы Научный подход к вопросу о происхождении Земли и Солнечной системы стал возможен после укрепления в науке мысли о материальном единстве во Вселенной. Возникает наука о происхождении и развитии небесных тел - космогония. Первые попытки дать научное обоснование вопросу о происхождении и развитии Солнечной системы были сделаны 200 лет назад. Все гипотезы о происхождении Земли можно разбить на две основные группы: небулярные ( лат. «небула» - туман, газ) и катастрофические. В основе первой группы лежит принцип образования планет из газа, из пылевых туманностей. В основе второй группы - различные катастрофические явления (столкновение небесных тел, близкое прохождение друг от друга звезд и т.д.). Одна из первых гипотез была высказана в 1745 году французским естествоиспытателем Ж.Бюффоном. Согласно этой гипотезе, наша планета образовалась в результате остывания одного из сгустков солнечного вещества, выброшенного Солнцем при катастрофическом столкновении его с крупной кометой. Мысль Ж.Бюффона об образовании Земли (и других планет) из плазмы была использована в целой серии более поздних и более совершенных гипотез «горячего» происхождения нашей планеты. Небулярные теории. Гипотеза Канта и Лапласа Среди них, безусловно, ведущее место занимает гипотеза, разработанная немецким философом И.Кантом (1755). Независимо от него другой ученый - француский математик и астроном П. Лаплас - пришел к тем же выводам, но разработал гипотезу более глубоко (1797). Обе гипотезы сходны между собой по существу и часто рассматриваются как одна, а авторов ее считают основоположниками научной космогонии. Гипотеза Канта - Лапласа относится к группе небулярных гипотез. Согласно их концепции, на месте Солнечной системы располагалась ранее огромная газо-пылевая туманность ( пылевая туманность из твердых частиц, по мнению И. Канта; газовая - по предположению П.Лапласа). Туманность была раскаленной и вращалась. Под действием законов тяготения материя ее постепенно уплотнялась, сплющивалась, образуя в центре ядро. Так образовалось первичное солнце. Дальнейшее охлаждение и уплотнение туманности привелок увеличению угловой скорости вращения, вследствие чего на экваторе произошло отделение наружной части туманности от основной массы в виде колец, вращающихся в экваториальной плоскости: их образовалось несколько. В качестве примера Лаплас приводил кольца Сатурна. Неравномерно охлаждаясь, кольца разрывались, и вследствие притяжения между частицами происходило образование планет, обращающихся вокруг Слнца. Остывающие планеты покрывались твердой коркой, на поверхности которой стали развиваться геологические процессы. И.Кант и П.Лаплас верно подметили основные и характерные черты строения Солнечной системы: ) подавляющая часть массы (99,86%) системы сосредоточена в Солнце; ) планеты обращаются почти по круговым орбитам и почти в одной и той же плоскости; ) все планеты и почти все их спутники вращаются в одну и ту же сторону, все планеты вращаются вокруг своей оси в ту же сторону. Значительной заслугой И.Канта и П. Лапласа явилось создание гипотезы, в основу которой была положена идея развития материи. Оба ученых считали, что туманность обладала вращательным движением, вследствие чего произошло уплотнение частиц и образование планет и Солнца. Они полагали, что движение неотделимо от материи и так же вечно,как и сама материя. Гипотеза Канта-Лапласа существовала в течене почти двух сотен лет. Впоследствии была доказана ее несостоятельность. Так, стало известно, что спутники некоторых планет, например Урана и Юпитера, вращаются в ином направлении, чем сами планеты. По данным современной физики, газ, отделившийся от центрального тела, должен рассеятьсяи не может сформироваться в газовые кольца, а позднее - в планеты. Другими существенными недостатками гипотезы Канта и Лапласа являются следующие: . Известно, что момент количества движения во вращающемся теле всегда остается постоянным и распределяется равномерно по всему телу пропорционально массе, расстоянию и угловой скорости соответствующей части тела. Этот закон распространяется и на туманность, из которой сформировались Солнце и планеты. В Солнечной системе количество движения не соответствует закону распределения количества движения в массе, возникшей из одного тела. В планета Солнечной системы сосредоточено 98% момента количества движения системы, а Солнце имеет только 2%, в то время как на долю Солнца приходится 99,86% всей массы Солнечной системы. . Если сложить моменты вращения Солнца и других планет, то при расчетах окажется, что первичное Солнце вращалось с той же скоростью, с какой сейчас вращается Юпитер. В связи с этим Солнце должно было обладать тем же сжатием, что и Юпитер. А этого, как показывают расчеты, недостаточно, чтобы вызвать дробление вращающегося Солнца, которое, как считали Кант и Лаплас, распалось вследствие избытка вращения. . В настоящее время доказано, что звезда, обладающая избытком вращения, распадается на части, а не образует семейство планет. Примером могут служить спектрально-двойные и кратные системы. Катастрофические теории. Гипотеза Джинса земля космогонический концентрический происхождение После гипотезы Канта-Лапласа в космогонии было создано еще несколько гипотез образования Солнечной системы. Появляются так называемые катострофические, в основе которых лежит элемент случайности, элемент счастливого стечения обстоятельств: В отличии от Канта и Лапласа, которые «позаимствовали» у Ж.Бюффона лишь идею «горячего» возникновения Земли, последователи этого течения развивали еще и саму гипотезу катасттрофизма. Бюффон полагал, Земля и планеты образовались за счет столкновения Солнца с кометой; Чемберлен и Мультон - образование планет связано с приливным воздействием проходящей мимо Солнца другой звезды. В качестве примера гипотезы катострофического направления рассмотрим концепцию английского астронома Джинса (1919г.). В основу его гипотезы положена возможность прохождения вблизи Солнца другой звезды. Под действием ее притяжения из Солнца вырвалась струя газа, которая при дальнейшей эволюции превратилась в планеты Солнечной системы. Газовая струя по своей форме напоминала сигару. В центральной части этого вращающегося вокруг Солнца тела образовались крупные планеты - Юпитер и Сатурн, а в концах «сигары» - планеты земной группы: Меркурий, Венера, Земля, Марс, Плутон. Джинс полагал, что прохождение звезды мимо Солнца, обусловившее образование планет Солнечной системы, позволяет объяснить несоответствие в распределении массы и момента количества движения в Солнечной системе. Звезда, вырвавшая газовую струю из Солнца, придала вращающейся «сигаре» избыток момента количества движения. Таким образом устранялся один из основных недостатков гипотезы Канта-Лапласа. В 1943 г. русский астроном Н.И.Парийский вычислил, что при большой скорости звезды, проходившей мимо Солнца, газовый протуберанец должен был уйти вместе со звездой. При малой скорости звезды газовая струя должна была упасть на Солнце. Только в случае строго определенной скорости звезды газовый протуберанец мог бы стать спутником Солнца. В этом случае его орбита должна быть в 7 раз меньше орбиты самой близкой к Солнцу планеты - Меркурия. Таким образом, гипотеза Джинса, так же как и гипотеза Канта-Лапласа, не смогла дать верного объяснения непропорциональному распределению момента количества движения в Солнечной системе Самым большим недостатком этой гипотезы является факт случайности, исключительности образования семьи планет, что противоречит материалистическому мировоззрению и имеющимся фактам, говорящим о наличии планет в других звездных мирах. Кроме того, расчеты показали, что сближение звезд в мировом пространстве практически исключено, и даже если бы это произошло, проходящая звезда не могла бы придать планетам движение по круговым орбитам. Современные гипотезы Принципиально новая идея заложена в гипотезах «холодного» происхождения Земли. Наиболее глубоко разработана метеоритная гипотеза, предложенная советским ученым О.Ю.Шмидтом в 1944 году. Из других гипотез «холодного» происхождения следует назвать гипотезы К.Вейцзекера (1944 г.) и Дж.Койпера (1951г.), во многом близкие к теории О.Ю.Шмидта, Ф. Фойл (Англия), А. Камерон (США) и Э. Шацман (Франция). Наиболее популярными являются гипотезы о происхождении Солнечной системы, созданные О.Ю. Шмидтом и В.Г.Фесенковым. Оба ученых при разработке своих гипотез исходили из представлений о единстве материи во Вселенной, о непрерывном движении и эволюции материи, являющихся ее основными свойствами, о разнообразии мира, обусловленного различными формами существования материи. Гипотеза О.Ю. Шмидта Согласно концепции О.Ю.Шмидта, Солнечная система образовалась из скопления межзвездной материи, захваченной Солнцем в процессе движения в мировом пространстве. Солнце движется вокруг центра Галактики, совершая полный оборот за 180 млн.лет. Среди звезд Галактики имеются большие скопления газово-пылевых туманностей .Исходя из этого, О.Ю.Шмидт полагал, что Солнце при движении вступило в одно из таких облаков и захватило его с собой. Вращение облака в сильном гравитационном поле Солнца привело к сложному перераспределению метеоритных частиц по массе, плотности и размерам, в результате чего часть метеоритов, центробежная сила которых оказалась слабее силы тяготения, была поглощена Солнце. Шмидт полагал, что первоначальное облако межзвездной материи обладало некоторым вращением, в противном случае его частицы выпали бы на Солнце. Облако превращалось в плоский уплотненный вращающийся диск, в котором вследствие увеличения взаимного притяжения частиц происходило сгущение. Образовавшиеся сгущения-тела росли за счет присоединяющихся к ним мелких частиц, как снежный ком. В процессе обращения облака, при сталкивании частиц началось их слипание, образование более крупных по массе агрегатов и присоединение к ним - аккреция более мелких частиц, попадающих в сферу их гравитационного влияния. Таким путем образовались планеты и обращающиеся вокруг них спутники. Планеты стали вращаться по круговым орбитам вследствие усреднения орбит малых частиц. Земля, по мнению О.Ю.Шмидта, также образовалась из роя холодных твердых частиц. Постепенное разогревание недр Земли произошло за счет энергетики радиоактивного распада, что привело к выделению воды и газа, входивших в небольших количествах в состав твердых частиц. В результате возникли океаны и атмосфера, обусловившие появление жизни на Земле. О.Ю.Шмидт, а позднее его ученики дали серьезное физико-математическое обоснование метеоритной модели формирования планет Солнечной системы. Современная метеоритная гипотеза объясняет не только особенности движения планет(форму орбит, разные направления вращения и др.), но и фактически наблюдаемое распределение их по массе и плотности, а также соотношение планетарных моментов количества движения с солнечным. Ученый считал, что имеющиеся несоответствия в распределении моментов количества движения Солнца и планет объясняются разными первоначальными моментами количества движения Солнца и газово-пылевой туманности. Шмидт расчитал и математически обосновал расстояния планет от Солнца и между собойи выяснил причины образования крупных и мелких планет в разных частях Солнечной системы и разницу в их составе. Посредством расчетов обоснованы причины вращательного движения планет в одну сторону. Недостатком гипотезы является рассмотрение вопроса о происхождении планет изолированно от образования Солнца - определяющего члена системы. Концепция не лишена элемента случайности: захвата Солнцем межзвездной материи. Действительно, возможность захвата Солнцем лостаточно крупного метеоритного облака очень мала. Более того, по рассчетам, такой захват возможен только при гравитационном содействии дркгой, близко находящейся звезды. Вероятность сочетания таких условий настолько незначительна, что это делает возможность захвата Солнцем межзвездного вещества событием исключительным. Гипотеза В.Г. Фесенкова Работы астронома В.А.Амбарцумяна, доказавшего непрерывность образования звезд в результате конденсации вещества из разряженных газово-пылевых туманностей, позволили академику В.Г.Фесенкову выдвинуть новую гипотезу (1960 г.),связывающюю происхождение Солнечной системы с общими закономерностями формирования материи в космическом пространстве. Фесенков полагал, что процесс образования планет широко распространен во Вселенной, где имеется много планетных систем. По его мнению, формирование планет связано с образованием новых звезд, возникающих в результате сгущения первоначально разреженного вещества в пределах одной из гигантских туманностей («глобул»). Эти туманности представляли собой весьма разреженную материю (плотностью порядка 10 г/см ) и состояли из водорода, гелия и небольшого количества тяжелых металлов. Сначала в ядре «глобулы» сформировалось Солнце, которое было более горячей, массивной и быстро вращающейся звездой, чем в настоящее время. Эволюция Солнца сопровождалась неоднократными выбросами материи в протопланетное облако, в результате чегооно потеряло часть массы и передалообразующимся планетам значительную долю своего момента количества движения. Расчеты показывают, что при нестационарных выбросах материи из недр Солнца могло сложиться фактически наблюдаемое соотношение моментов количества движения Солнца и протопланетного облака(а следовательно и планет).Одновременное образование Солнца и планет доказывается одинаковым возрастом Земли и Солнца. В результате уплотнения газово-пылевого облака сформировалось звездообразное сгущение. Под влиянием быстрого вращения туманности значительная часть газово-пылевой материи все больше удалялась от центра туманности по плоскости экватора, образуя нечто вроде диска. Постепенно уплотнение газово-пылевой туманности обусловило формирование планетных сгущений, образовавших впоследствии современные планеты Солнечной системы. В отличие от Шмидта Фесенков полагает, что газово-пылевая туманность находилась в раскаленном состоянии. Большой его заслугой является обоснование закона планетных расстояний в зависимости от плотности среды. В.Г.Фесенков математически обосновал причины устойчивости момента количества движенияв Солнечной системе потерей вещества Солнца при выборе материи, вследствие чего произошло замедление его вращения. В.Г.Фесенков приводит также доводы в пользу обратного движения некоторых спутников Юпитера и Сатурна, объясняя это захватом планетами астероидов. Большую роль Фесенков придавал процессам радиоактивного распада изотопов К, U, Th и других, содержание которых тогда было значительно выше. К настоящему времени теоритически рассчитан ряд вариантов радитогенного разогрева недр, наиболее детальный из которых предложен Е.А.Любимовой (1958г.). В соответствии с этими расчетами через один миллиард лет температура недр Земли на глубине нескольких сот километров достиглатемпературы плавления железа. К этому времени, по-видимому, относится начало образования ядра Земли, представленного опустившимися к ее центру металлами - железом и никелем. Позже, при дальнейшем повышении температуры, из мантии началось выплавление наиболее легкоплавких силикатов, которые в следствии небольшой плотности поднимались вверх. Этот процесс, теоритически и экспериментально изученный А.П.Виноградовым, объясняет образование земной коры. Также нужно отметить две гипотезы, развившиеся к концу 20 века. Они рассматривали развитие Земли, не затрагивая развитие Солнечной системы в целом. . Земля была целиком расплавлена и в процессе истощения внутренних тепловых ресурсов (радилактивных элементов) постепенно стала остывать. В верхней части образовалась твердая корка. И при уменьшении объема остывшей планеты эта корка ломалась, и формировались складки и другие формы рельефа. . Полного плавления вещества на Земле не было. В относительно рыхлой протопланете формировались локальные очаги плавления (этот термин ввел академик Виноградов) на глубине около 100 км. Постепенно количество радиоактивных элементов уменьшалось, и температура ЛОП снижалась. Из магмы кристализовывались и выпадали на дно первые высокотемпературные минералы. Химический состав этих минералов отличался от состава магмы. Из магмы извлекались тяжелые элементы. И остаточный расплав относительно обогащался легкими. После 1 фазы и дальнейшего понижения температуры из раствора кристализовывалась следующая фаза минералов, также содержащая больше тяжелых элементов. Так происходило постепенное остывание и кристализация ЛОПов. Из первоначального ультраосновного состава магмы образовалась магма основного бальзатового состава. В верхней части ЛОПа образовывалась флюидная шапка (газово-жидкая). Бальзатовая магма обладала подвижностью и текучестью. Она прорвалась из ЛОПов и излилась на поверхность планеты, сформировав первую жесткую базальтовую корку. Флюидная шапка также прорвалась на поверхность и, смешавшись с остатками превичных газов, сформировала первую атмосферу планеты. В составе первичной атмосферы были окислы азота. Н , Не, инертные газы, СО , СО, Н S, HCl, HF, CH , пары воды. Свободного кислорода почти не было. Температура поверхности Земли была около 100 С, жидкой фазы не было. Внутренность довольно рыхлой протопланеты имела температуру близкую к температуре плавления. В этих условиях интенсивно протекалм процессы тепломассопереноса внутри Земли. Они происходили ввиде тепловых конвекционных потоков (ТКП). Особенно важны ТКП, возникающие в поверхностных слоях. Там развивались ячеистые тепловые структуры, которые временами перестраивались в одноячеистую структуру. Восходящие ТКП передавали импульс движения на поверхность планеты (бальзатовая корка), и на ней создавалась зона растяжения. В результате растяжения в зоне подъема ТКП образуется мощный протяженный разлом длиной от 100 до 1000 км. Их назвали рифтовые разломы. Далее разлом заполняется глубинным бальзатовым веществом, надстраиваются первичные бальзатовые плиты («спрединг»). Температура поверхности планеты и ее атмосфера остывает ниже 100 С. Из первичной атмосферы конденсируется вода и формируется первичная гидросфера. Ландшафт Земли представляет собой мелководный океан с глубиной до 10 м, с отдельными вулканическими псевдоостровами, обнажающимися во время отливов. Постоянной суши не было. При дальнейшем понижении температуры ЛОП полностью раскристализовывались и превращались в жесткие кристаллические ядра в недрах довольно рыхлой планеты. Поверхностный покров планеиы подвергался разрушению со стороны агрессивных атмо- и гидросферы. В результате всех этих процессов происходило образование магматических, осадочных и метаморфических пород. Таким образом, гипотезы о происхождении нашей планеты объясняют современные данные о ее строении и положении в Солнечной системе. И освоение космоса, запуски спутников и космических ракет дают много новых фактов для практической проверки гипотез и дальнейшего совершенствования. Литература 1. Вопросы космогонии, М., 1952-64 2. Шмидт О. Ю., Четыре лекции о теории происхождения Земли, 3 изд., М., 1957; . Левин Б. Ю. Происхождение Земли. «Изв. АН СССР Физика Земли», 1972, № 7; . Сафронов В. С., Эволюция допланетного облака и образование Земли и планет, М., 1969; . . Каплан С. А., Физика звезд, 2 изд., М., 1970; . Проблемы современной космогонии, под ред. В. А. Амбарцумяна, 2 изд., М., 1972. . Аркадий Леокум, Москва, «Джулия», 1992 г. |