ааа. Хранение, обработка и передача информации
Скачать 0.53 Mb.
|
Хранение, обработка и передача информации Взаимосвязь процессов хранения, обработки и передачи информации, виды информационных носителей, способы обработки информации, виды источников и приемников информации, каналы связи, их виды и способы защиты от шума, единица измерения скорости передачи информации пропускная способность канала связи Процессы хранения, обработки и передачи информации являются основными информационными процессами. В разных сочетаниях они присутствуют в получении, поиске, защите, кодировании и других информационных процессах. Рассмотрим хранение, обработку и передачу информации на примере действий школьника, которые он выполняет с информацией при решении задачи. Опишем информационную деятельность школьника по решению задачи в виде последовательности информационных процессов. Условие задачи (информация) хранится в учебнике. Посредством глаз происходит передача информации из учебника в собственную память школьника, в которой информация хранится. В процессе решения задачи мозг школьника выполняет обработку информации. Полученный результат хранится в памяти школьника. Передача результата — новой информации — происходит с помощью руки школьника посредством записи в тетради. Результат решения задачи хранится в тетради школьника. Таким образом (рис. 9), можно выделить процессы хранения информации (в памяти человека, на бумаге, диске, аудио- или видеокассете и т. п.), передачи информации (с помощью органов чувств, речи и двигательной системы человека) и обработки информации (в клетках головного мозга человека). Информационные процессы взаимосвязаны. Например, обработка и передача информации невозможны без ее хранения, а для сохранения обработанной информации ее необходимо передать. Рассмотрим каждый информационный процесс более подробно. Рис. 9. Взаимосвязь информационных процессов Хранение информации является информационным процессом, в ходе которого информация остается неизменной во времени и пространстве. Хранение информации не может осуществляться без физического носителя. Носитель информации - физическая среда, непосредственно хранящая информацию. Носителем информации, или информационным носителем, может быть: ■ материальный предмет (камень, доска, бумага, магнитные и оптические диски); ■ вещество в различных состояниях (жидкость, газ, твердое тело); ■ волна различной природы (акустическая, электромагнитная, гравитационная). В примере о школьнике были рассмотрены такие носители информации, как бумага учебника и тетради (материальный предмет), биологическая память человека (вещество). При получении школьником визуальной информации носителем информации являлся отраженный от бумаги свет (волна). Выделяют два вида информационных носителей: внутренние и внешние. Внутренние носители (например, биологическая память человека) обладают быстротой и оперативностью воспроизведения хранимой информации. Внешние носители (например, бумага, магнитные и оптические диски) более надежны, могут хранить большие объемы информации. Их используют для долговременного хранения информации. Информацию на внешних носителях необходимо хранить так, чтобы можно было ее найти и, по возможности, достаточно быстро. Для этого информацию упорядочивают по алфавиту, времени поступления и другим параметрам. Внешние носители, собранные вместе и предназначенные для длительного хранения упорядоченной информации, являются хранилищем информации. К числу хранилищ информации можно отнести различные библиотеки, архивы, в том числе и электронные. Количество информации, которое может быть размещено на информационном носителе, определяет информационную емкость носителя. Как и количество информации в сообщении, информационная емкость носителя измеряется в битах. Обработка информации является информационным процессом, в ходе которого информация изменяется содержательно или по форме. Обработку информации осуществляет исполнитель по определенным правилам. Исполнителем может быть человек, коллектив, животное, машина. Обрабатываемая информация хранится во внутренней памяти исполнителя. В результате обработки информации исполнителем из исходной информации получается содержательно новая информация или информация, представленная в другой форме (рис. 10). Рис. 10. Обработка информации Вернемся к рассмотренному примеру о школьнике, решившем задачу. Школьник, который являлся исполнителем, получил исходную информацию в виде условия задачи, обработал информацию в соответствии с определенными правилами (например, правилами решения математических задач) и получил новую информацию в виде искомого результата. В процессе обработки информация хранилась в памяти школьника, которая является внутренней памятью человека. Обработка информации может осуществляться путем: ■ математических вычислений, логических рассуждений (например, решение задачи); ■ исправления или добавления информации (например, исправление орфографических ошибок); ■ изменения формы представления информации (например, замена текста графическим изображением); ■ кодирования информации (например, перевод текста с одного языка на другой); ■ упорядочения, структурирования информации (например, сортировка фамилий по алфавиту). Вид обрабатываемой информации может быть различным, и правила обработки могут быть разными. Автоматизировать процесс обработки можно лишь в том случае, когда информация представлена специальным образом, а правила обработки четко определены. Передача информации является информационным процессом, в ходе которого информация переносится с одного информационного носителя на другой. Процесс передачи информации, как ее хранение и обработка, также невозможен без носителя информации. В примере о школьнике в тот момент, когда он читает условие задачи, информация передается с бумаги (с внешнего информационного носителя) в биологическую память школьника (на внутренний информационный носитель). Причем процесс передачи информации происходит с помощью отраженного от бумаги света — волны, которая является носителем информации. Процесс передачи информации происходит между источником информации, который ее передает, и приемником информации, который ее принимает. Например, книга является источником информации для читающего ее человека, а читающий книгу человек — приемником информации. Передача информации от источника к приемнику осуществляется по каналу связи (рис.11). Каналом связи могут быть воздух, вода, металлические и оптоволоконные провода. Рис. 11. Передача информации Между источником и приемником информации может существовать обратная связь. В ответ на полученную информацию приемник может передавать информацию источнику. Если источник является одновременно и приемником информации, а приемник является источником, то такой процесс передачи информации называется обменом информацией. В качестве примера рассмотрим устный ответ ученика учите лю на уроке. В этом случае источником информации является ученик, а приемником информации — учитель. Источник и приемник информации имеют носители информации — биологическую память. В процессе ответа ученика учителю происходит передача информации из памяти ученика в память учителя Каналом связи между учеником и учителем является воздух а процесс передачи информации осуществляется с помощью носителя информации— акустической волны. Если учитель ш только слушает, но и корректирует ответ ученика, а ученик учитывает замечания учителя, то между учителем и учеником происходит обмен информацией. Информация передается по каналу связи с определенной скоростью, которая измеряется количеством передаваемой информации за единицу времени (бит/с). Реальная скорость передач информации не может быть больше максимально возможно скорости передачи информации по данному каналу связи, которая называется пропускной способностью канала связи и зависит от его физических свойств. Скорость передачи информации — количество информации, передаваемое за единицу времени. Пропускная способность канала связи — максимально возможная скорость передачи информации по данному каналу связи. По каналу связи информация передается с помощью сигналов. Сигнал — это физический процесс, соответствующий какому-либо событию и служащий для передачи сообщения об этом событии по каналу связи. Примерами сигналов являются взмахи флажками, мигания ламп, запуски сигнальных ракет, телефонные звонки. Сигнал может передаваться с помощью волн. Например, радиосигнал передается электромагнитной волной, а звуковой сигнал — акустической волной. Преобразование сообщения в сигнал, который может быть передан по каналу связи от источника к приемнику информации, происходит посредством кодирования. Преобразование сигнала в сообщение, которое будет понятно приемнику информации, выполняется с помощью декодирования (рис. 12). Рис. 12. Передача сигналов Кодирование и декодирование может осуществляться как живым существом (например, человеком, животным), так и техническим устройством (например, компьютером, электронным переводчиком). В процессе передачи информации возможны искажения или потери информации под воздействием помех, которые называются шумом. Шум возникает из-за плохого качества каналов связи или их незащищенности. Существуют разные способы защиты от шума, например техническая защита каналов связи или многократная передача информации. Например, из-за шума улицы, доносящегося из открытого окна, ученик может не расслышать часть передаваемой учителем звуковой информации. Для того чтобы ученик услышал объяснение учителя без искажений, можно заранее закрыть окно или попросить учителя повторить сказанное. Сигнал может быть непрерывным или дискретным. Непрерывный сигнал плавно меняет свои параметры во времени. Примером непрерывного сигнала являются изменения атмосферного давления, температуры воздуха, высоты Солнца над горизонтом. Дискретный сигнал скачкообразно меняет свои параметры и принимает конечное число значений в конечном числе моментов времени. Сигналы, представленные в виде отдельных знаков, являются дискретными. Например, сигналы азбуки Морзе, сигналы, служащие для передачи текстовой и числовой информации, — это дискретные сигналы. Поскольку каждому отдельному значению дискретного сигнала можно поставить в соответствие определенное число, то дискретные сигналы иногда называют цифровыми. Сигналы одного вида могут быть преобразованы в сигналы другого вида. Например, график функции (непрерывный сигнал) может быть представлен в виде таблицы отдельных значений (дискретный сигнал). И наоборот, зная значения функции для разных значений аргументов, можно построить график функции по точкам. Звучащую музыку, которая передается непрерывным сигналом, можно представить в виде дискретной нотной записи. И наоборот, по дискретным нотам можно сыграть непрерывное музыкальное произведение. Во многих случаях преобразования одного вида сигнала в другой могут приводить к потере части информации. Существуют технические устройства, которые работают с непрерывными сигналами (например, ртутный термометр, микрофон, магнитофон), и технические устройства, работающие с дискретными сигналами (например, проигрыватель для компакт-дисков, цифровой фотоаппарат, сотовый телефон). Компьютер может работать как с непрерывными, так и дискретными сигналами |