Главная страница

тхрп. Контрольная работа по дисциплине стандартизация и сертификация Новосибирск 2022. Клейковина, ее состав и свойства


Скачать 31.15 Kb.
НазваниеКонтрольная работа по дисциплине стандартизация и сертификация Новосибирск 2022. Клейковина, ее состав и свойства
Дата17.05.2023
Размер31.15 Kb.
Формат файлаdocx
Имя файлатхрп.docx
ТипКонтрольная работа
#1139301

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

АГРАРНЫЙ УНИВЕРСИТЕТ


контрольная работа по дисциплине

стандартизация и сертификация

Новосибирск 2022.

9. Клейковина, ее состав и свойства.

Под клейковиной понимают белковый комплекс, образующийся при отмывании теста от крахмала и обладающий упругими и эластичными свойствами.

Клейковина, отмытая из пшеничного теста, представляет собой сильно гидратированный гель, состоящий в основном из белков, но содержащий кроме него углеводы, липиды и минеральные вещества. Содержание компонентов клейковины зависит от сорта муки, ее подготовки к замесу, продолжительности отмывания и различных других факторов. Сумма белков в клейковине составляет 75-99 %, представленных главным образом, глиадином (до 45 %) и глютенином (до 42 %).

Значение клейковины заключается в том, что она формирует тесто. При замешивании муки с водой в процессе приготовления теста отдельные частицы клейковины, набухая, слипаются друг с другом и образуют непрерывную фазу гидратированного белка, в результате чего и образуется компактная, упругая масса теста. Углекислый газ, выделяемый дрожжами при брожении теста, растягивает клейковину, т.е. разрыхляет эту массу, увеличивая ее объем, придает ей мелкопористую структуру, которая закрепляется при выпечке, образуя характерную пористую структуру хлебного мякиша. Качество выпекаемого хлеба во многом зависит от свойств клейковины.

Клейковина является весьма лабильным продуктом и довольно легко изменяет свои вязко-упруго-эластичные свойства под влиянием различных факторов. На свойства клейковины могут оказывать действие, например, активное вентилирование, тепловая сушка, низкие температуры, газация, операции, связанные с подготовкой зерна к помолу (гидротермическая обработка), размол в муку, процессы, происходящие при хранении зерна и муки и, наконец, целый цикл процессов, связанных с приготовлением теста и выпечкой хлеба.

Под влиянием высокой температуры клейковина денатурируется, теряет связность, становится жесткой, неэластичной, малорастяжимой. Причем, чем выше влажность зерна, тем чувствительнее оно к тепловой денатурации. Однако если зерно имеет слабую клейковину, то кратковременное тепловое воздействие можно использовать как один из способов ее укрепления.

Укрепляющим действием обладают также различные окислители - непредельные жирные кислоты и некоторые другие вещества. При этом происходит окисление сульфгидрильных (—SH—) или пептидных (—СО—NH—) группировок в соседних макромолекулах клейковинного белка, в результате чего возможна их спайка через дисульфидные (—S—S—) или азотные мостики, что усиливает жесткость всего клейковинного комплекса.

К веществам, понижающим упругие свойства клейковины, относятся такие как бисульфиты, цистеин, мочевина, глютатион, неионогенные эмульгаторы, протеолитические ферменты.

Итак, различают клейковину «нормального качества», «слабую», «крепкую», «крошащуюся» и др.

Качество клейковины определяют различными методами, например, по скорости растягивания клейковины под тяжестью пятиграммовой гирьки. Определение качества клейковины производят также с помощью вискозиметра Ауэрмана-Воскресенского. В этом случае о механических свойствах клейковины судят по продолжительности истечения навески 2 г клейковины через отверстие сечением в 4,9 мм под давлением груза в 3 кг. В настоящее время для определения вязко-эластичных свойств клейковины применяют пенетрометры различных марок, а также отечественные приборы ПЭК-3, ПЭК-3 А, ИДК-1. С помощью пенетрометров измеряют глубину проникновения в клейковину специального тела с погружением, а с помощью ПЭК-ЗА и ИДК-1 - сжимаемость шарика клейковины под влиянием известного груза за определенное время.

Для суждения о качестве клейковины определяют также её рас-плываемость.

Из клейковины делают шарик, который кладут под стеклянный колпак, и оставляют при определенной температуре на некоторое время. Если была взята мука из зерна, поврежденного клопом-черепашкой, т.е. мука, содержащая активные ферменты, расщепляющие белки, шарик расплывается. Если мука была нормальная, хорошая, то после отлежки форма шарика практически не изменится. Если мука была получена из морозобойного зерна, то в этом случае, наоборот, шарик клейковины станет даже более компактным.

15. Основные физические свойства зерновых масс.

Сыпучесть и самосортированиеотносят к физическим свойствам зерна. Зерновая масса состоит из множества отдельных твердых частиц, различных по размеру и плотности, поэтому обладает большой подвижностью - сыпучестью. Наибольшей сыпучестью обладают округлые зерна с гладкой поверхностью (просо, горох), у зерна продолговатого с шероховатой поверхностью сыпучесть снижается.

С сыпучестью связана способность зерновой массы к самосортированию. При любом перемещении или встряхивании зерновая масса «расслаивается». Тяжелые компоненты - минеральная примесь, крупные зерна как бы «тонут», опускаются вниз, а легкие - органический сор, семена сорняков и щуплые зерна «всплывают». Это может оказать отрицательное влияние на сохранность, так как обычно семена сорных трав и щуплое зерно имеют повышенную энергию дыхания, что может привести к порче зерна при хранении. Способность зерновой массы к самосортированию учитывается при отборе проб для анализов.

Скважистость - заполненные воздухом промежутки между зернами в насыпи. Обычно скважистость выражают в процентах к общему объему данной насыпи. Плотность укладки зерновой массы в объеме хранилища и, следовательно, ее скважистость зависят от формы, размеров и состояния поверхности зерен, от количества и характера примесей, от массы и влажности зерновой насыпи, формы и размеров хранилища. Однородное по крупности зерно, а также зерно с шероховатой поверхностью имеют скважистость большую, чем зерна разной крупности и округлой формы. Так, скважистость составляет (в %): ржи и пшеницы - 35 - 45, гречихи и риса (зерна) - 50 - 65, овса - 50 - 70.

Запас воздуха в межзерновых пространствах имеет большое значение для сохранения жизнеспособности семян. Большая газопроницаемость зерновых масс позволяет проводить активное вентилирование, регулировать состав газовой среды в межзерновых пространствах, вводить пары ядохимикатов для борьбы с амбарными вредителями. Однако наличие межзерновых пространств и кислорода в них благоприятствует развитию амбарных вредителей.

Сорбционные свойства зернатакже относят к физическим. Зерно всех культур и зерновые массы в целом обладают сорбционной емкостью, т. е. способностью поглощать газы и пары различных веществ. Эта способность зерна обусловлена его капиллярно-пористой структурой, что делает активную поверхность зерновки в 200 - 220 раз больше истинной. Кроме того, для биополимеров (белков, слизей, крахмала) характерно отсутствие прочной кристаллической решетки, поэтому молекулы воды и других веществ могут легко внедряться в них, взаимодействуя с активными центрами. В белках этими центрами являются такие функциональные группы, как -NН -, Н2N-, - СООН, - СОNН2, - ОН; в углеводах - ОН и - 0 -. При изменении условий окружающей среды зерно может частично отдавать поглощенные им вещества - десорбировать их. Однако полностью десорбция не происходит.

Явления сорбции принято подразделять на две группы: сорбция и десорбция различных газов и паров, кроме воды; гигроскопичность - сорбция и десорбция паров воды.

Способность зерна и продуктов его переработки активно сорбировать газы и пары различных веществ обязывает руководителей заботиться о чистоте транспорта и хранилищ, иначе продукты по вкусу и запаху могут стать непригодными для пищевых целей. При борьбе с амбарными вредителями можно применять лишь такие пестициды, которые менее вредны для теплокровных и более полно десорбируются.

Теплопроводность и температуропроводность зернатакже относят к физическим свойствам. Тепло в зерновой массе распространяется двумя способами: от зерна к зерну при их соприкосновении - теплопроводность зерна и перемещением воздуха в межзерновых пространствах - конвекция. Зерно имеет теплопроводность, близкую к древесине, т. е. обладает низкой теплопроводностью. Воздух также характеризуется небольшой теплопроводностью. Поэтому суммарный показатель теплопроводности зерновой массы в целом невелик и колеблется в пределах от 0,12 до 0,2 ккал

Скорость нагревания зерновой массы - температуропроводность зависит от теплопроводности и также невелика. Таким об-, разом, зерновая масса характеризуется большой тепловой инерцией, изменение температуры зерна в средних слоях насыпи происходит очень медленно. Поэтому зерно в зимние месяцы можно охладить, проведя активное вентилирование насыпи холодным сухим воздухом. Низкая температура его сохраняется в течение большей части лета, в результате чего замедляются биохимические процессы, протекающие в нем, и прекращается размножение амбарных вредителей. Если же на хранение засыпано теплое зерно, то в нем долго сохраняются благоприятные условия для: активной жизнедеятельности самого зерна, амбарных вредителей и микроорганизмов. В весенне-летний период, а также в осенне-зимний наблюдается большая амплитуда колебаний температуры между отдельными слоями зерновой массы, что может привести к конденсации влаги на отдельных ее участках, увлажнению зерна.

30. Режимы активного вентилирования.

Наиболее эффективным и доступным средством удаления из зерновой массы образующегося тепла, предотвращения самосогревания, а также консервации зерна путем охлаждения и подсушивания является активное вентилирование

Активным вентилированием называют принудительное продувание зерна воздухом без его перемещения. Это возможно за счет скважистости зерновой массы. Воздух, нагнетаемый вентиляторами, вводится в зерновую массу через систему каналов или труб и пронизывает ее в различных направлениях. Применяя активное вентилирование, обеспечивают предпосевной обогрев семян. Используя установки для активного вентилирования, легко и быстро проводят дегазацию зерновых масс после обработки фумигантами. Активное вентилирование исключает травмирование зерна, что всегда в той или иной степени происходит во время пропуска зерновых масс через зерносушилки, зерноочистительные машины и при перемещении транспортными механизмами. Это особенно важно для семенного материала.

Наряду со значительной технологической эффективностью активное вентилирование выгодно и в экономическом отношении. Оно исключает затраты на перемещение зерновой массы и значительно сокращает потребность в рабочей силе. Вентилирование зерна получило широкое распространение как технологический процесс, обеспечивающий более устойчивое хранение зерна.

Расширенное толкование понятия вентилирование зерна не ограничивается рамками только традиционных приемов обработки зерна в насыпи в складах, на площадках и в силосах элеваторов. В последние годы широкое применение нашли также вентилируемые бункера и камерные сушилки, отличающиеся высокой степенью механизации погрузочно-разгрузочных работ. Эти устройства используются для сушки зерна, охлаждения его атмосферным или искусственно охлажденным воздухом и для других целей. Установки для вентилирования зерна в складах нередко применяются для проведения газации и дегазации зерна и т. д.

Таким образом, назначение вентилирования зерна может быть самым разнообразным: профилактическое вентилирование; охлаждение зерна; промораживание; ликвидация самосогревания; охлаждение зерна после зерносушилок; сушка зерна; прогрев зерна перед посевом; газация и дегазация зерна и т. д.

В зависимости от назначения устанавливают различные режимы вентилирования, определяемые температурой и относительной влажностью подаваемого воздуха, расходом его на 1 т зерна, высотой насыпи (толщиной зернового слоя), продолжительностью вентилирования и пр. В некоторых случаях это требует применения соответствующих вентиляционных устройств.

Профилактическое вентилирование. Применяют для подавления жизнедеятельности микрофлоры, предотвращения самосогревания зерна, проветривания зерна с амбарным запахом, выравнивания температуры и влажности в зерновой насыпи.

Профилактическое вентилирование призвано предотвратить самосогревание и возможное развитие других нежелательных процессов (плесневение и т.п.). Такое вентилирование проводят периодически, по мере необходимости. Лучший технологический эффект достигается, если профилактическое вентилирование сопровождается некоторым охлаждением зерна, а также подсушиванием влажного зерна.

Охлаждение зерна. Применяют в тех случаях, когда необходимо повысить его стойкость при хранении. При температуре зерна от 0 до 10°С сильно затормаживаются физиологические и микробиологические процессы. Такое зерно называют охлажденным. Дополнительное охлаждение зерна на вентиляционных установках после зерносушилок применяют тогда, когда охладительные камеры их работают недостаточно эффективно.

Промораживание зерна. Способствует переводу его в состояние анабиоза (замедленной жизнедеятельности) и сокращает зараженность зерновыми вредителями. В практике сушки и вентилирования воздействие отрицательных температур на семена может быть кратковременным (охлаждение просушенных семян при работе зерносушилок в морозную погоду) и длительным при промораживании.

Прогрев семян перед посевом (воздушно-тепловая обработка) повышает их энергию прорастания и всхожесть. Об этом свидетельствуют многочисленные исследования. Поэтому весной охлажденное зерно перед посевом целесообразно прогреть.

43. Физические свойства картофеля, плодов и овощей.

Основными физическими процессами, происходящими в плодах и овощах при хранении, являются испарение влаги, выделение тепла, изменение температуры.

Выделение влаги плодами и овощами различно в разные периоды хранения; в начале хранения обычно наблюдается активное испарение воды (период послеуборочного дозревания), в средний  период оно понижается, а в конце хранения вновь повышается вследствие приближении нового вегетационного периода. Перезревание плодов сопровождается усиленной влагоотдачей, так как по мере старения коллоидов понижается их гидрофильность.

Как пониженная влажность, так и повышенная температура воздуха усиливают испарение воды. Скорость испарения влаги не находится в прямой зависимости от содержания ее в плодах и овощах, а зависит от температуры, дефицита влажности воздуха, циркуляции воздуха, степени зрелости и других факторов. Иногда наблюдается обратное явление — повышение содержания влаги в плодах и овощах при высокой относительной влажности окружающего воздуха, например при хранении корнеплодов в умеренно влажном песке. Очевидно, влага, образующаяся в процессе аэробного дыхания, остается в тканях и, кроме того, плоды и овощи поглощают ее из окружающей среды.

Однако в большинстве случаев на практике наблюдается увядание плодов и овощей, особенно при низкой влажности воздуха, усиленной вентиляции и т. д. многие практические меры при хранении плодов и овощей имеют целью максимально уменьшить испарение влаги и предупредить увядание плодов и овощей. К таким мерам относятся: поддержание в хранилищах достаточно высокой влажности воздуха, переслойка овощей песком, применение упаковочных материалов, обертка плодов в бумагу и др.

Вместе с тем поверхность плодов и овощей должна быть сухой во избежание развития микроорганизмов. Поэтому влажные картофель и овощи перед закладкой на хранение обычно просушивают.

Выделение тепла. В процессе дыхания плодов и овощей во время хранения выделяется тепло. Однако в воздух выделяется не все тепло, так как часть его используется клеткой для обменных реакций и на процесс испарения, часть запасается в виде химически связанной энергии в АТФ.

 Изменение температуры.  охлаждение или нагревание в процессе хранения (и не только хранения) происходит в огромной степени под влиянием температуры окружающей атмосферы. При этом скорость охлаждения зависит от температуры и скорости движения охлаждающего воздуха, подаваемого в хранилище. Процесс охлаждения овощной зелени, ягод и косточковых плодов намного ускоряется в воде со льдом или в специальной вакуум-камере.Длительное хранение большинства плодов и овощей при низких температурах (близких к 0° С) снижает интенсивность процессов внутриклеточного метаболизма, замедляет процессы дозревания и перезревания, снижает расход запасных веществ на дыхание, а также деятельность микроорганизмов. Уровень температуры хранения должен находиться где-то близко к границе замерзания тканей плодов и овощей, что зависит главным образом от содержания органических кислот, сахаров, пектина и др.

Температура замерзания многих плодов и овощей в основном коррелируется с содержанием в них сухих веществ и находится в пределах от —1 до —2,5° С. Так, средняя температура. замерзания картофеля —1,2°’С, капусты белокочанной —1,6°, моркови и свеклы —1,6°, лука-репки —1,78°, яблок —2° винограда —3,8°, вишни —3,5° С и т. д. 

63. Технология сушки сочной продукции.

Сушка плодоовощной продукции — это прием, повышающий концентрацию субстрата до таких пределов, при которых нет условий для нормального обмена веществ как в клетках самого продукта, так и в клетках микробов. Поэтому продукт консервируется на длительное время.

В процессе высушивания из плодов и овощей испаряется влага, ее массовая доля в сушеных продуктах снижается в 4…6 раз и более. Например, у яблок — в 4 раза по сравнению со свежими.

С уменьшением влаги возрастает не только массовая доля сухих веществ в сухофруктах и сушеных овощах, но и их энергетическая ценность за счет углеводов, белков и других ценных питательных веществ. При этом на 60 % сохраняется их витаминная ценность.

Способы сушки овощей и плодов

Установки, применяемые для сушки, различаются между собой способами подвода теплоты к объектам сушки: конвективным, кондуктивным (или контактным), термоизлучением (при помощи инфракрасных лучей) и токами высокой и сверхвысокой частоты. Для сушки плодоовощной продукции применяют также сублимационный метод.

Конвективный способ сушки. При этом способе агент сушки (нагретый воздух, перегретый пар) выполняет функцию теплоносителя и влагопоглотителя. Преимущество способа — возможность регулирования температуры высушиваемого продукта. Установки для этого способа сушки просты по конструкции и надежны в эксплуатации. Недостатки конвективного способа сушки: градиент температуры направлен в сторону, противоположную градиенту влагосодержания, что тормозит удаление влаги из продукта; относительно низкий коэффициент теплоотдачи от сушильного агента к поверхности продукта вследствие того, что последний сушится в неподвижном слое, омываясь агентом сушки и отдавая ему влагу.

Сушка во взвешенном состоянии — это более интенсивный конвективный способ. Осуществляют ее в аппаратах кипящего (псевдоожиженного) слоя, который образуется в камере постоянного сечения. Скорость агента сушки в верхней камере выше, чем внизу, из‑за стремления воздуха к расширению, и в связи с этим частицы продукта начинают движение в верхней части слоя.

Кондуктивный способ сушки. Он основан на передаче теплоты материалу при соприкосновении с горячей поверхностью. Воздух служит только для удаления водяного пара из сушилки и является влагопоглотителем.. Применение этого способа сушки ограничено, хотя он отличается высокой интенсивностью и экономичностью. На 1 кг испарившейся влаги затрачивается всего 1,3… 1,4 кг пара (вальцовые сушилки).

Сушка инфракрасными лучами (термоизлучением). Скорость сушки инфракрасными лучами (ИКЛ) увеличивается по сравнению с конвективной, но непропорционально увеличению теплового потока.

Сушка токами высокой и сверхвысокой частоты. Этот способ сушки токами высокой (ВЧ) и сверхвысокой (СВЧ) частоты основан на том, что диэлектрические свойства воды и сухих веществ продуктов резко различаются, поэтому влажный материал значительно быстрее нагревается, чем сухой. В процессе сушки с применением ВЧ и СВЧ температура внутренних слоев продукта выше, чем наружных, более обезвоженных. Тепловой поток направлен к периферии продукта, и влагоперенос имеет то же направление, что способствует ускорению сушки. Возникающий градиент температуры и градиент влагосодержания способствуют перемещению влаги изнутри к поверхности, в результате процесс сушки проходит интенсивнее.

Преимущества сушки ВЧ и СВЧ по сравнению с конвективной и контактной сушкой — возможность регулирования и поддержания определенной температуры продукта и более интенсивный процесс обезвоживания, что способствует улучшению качества высушиваемых продуктов.

Сублимационная сушка. Все большее распространение получает способ сушки пищевых продуктов в замороженном состоянии в условиях глубокого вакуума.

Процесс, при котором твердое вещество (лед) переходит в парообразное состояние, минуя жидкое, называют сублимацией или возгонкой, а обратный процесс, т. е. конденсацию пара с непосредственным переходом его в твердое состояние, минуя жидкую фазу, — десублимацией.

Комбинированные способы сушки плодоовощного сырья. Вырабатываемые сушеные овощи и фрукты в процессе восстановления медленно поглощают влагу, и при кулинарной обработке их необходимо варить в течение 18…25 мин. Этот недостаток нивелируют, используя технологии получения быстровосстанавливаемых сушеных продуктов.

Технологический процесс сушки овощей

Технологический процесс сушки овощей состоит из подготовки сырья и обезвоживания, т. е. Сушки. Корнеплоды, в частности морковь, перед сушкой подвергают глубокой термической обработке, а свеклу варят почти до готовности. Это обеспечивает сокращение времени восстановления высушенных корнеплодов при варке до 20…25 мин вместо 35…45 мин при обычном бланшировании. При бланшировании в целом виде корнеплоды меньше теряют Сахаров, красящих веществ, витаминов, других растворимых веществ.

После мойки и очистки морковь и свекла поступают на конвейер ручной доочистки, где у моркови удаляют зеленые верхушки, остатки кожицы, черные пятна и прочие дефекты, а у свеклы — грубые верхушечные части. Доочищенные и проинспектированные корнеплоды поступают в овощерезки.

После нашилкованные овощи направляют в ленточный паровой бланширователь, где бланшируют в течение 2..3 мин и температуре в паровой камере не ниже 93 °С.

Сушат овощи на паровой конвейерной сушилке. Температура воздуха над первой и последующими лентами должна быть 50, 46, 40 и 33 °С, а относительная влажность отработанного воздуха — 47 %. Общая продолжительность сушки 186 мин. Конечная влажность продукта должна быть не более 14 %.

Технологический процесс сушки подов и ягод

Качество сушеных фруктов и ягод в значительной степени зависит от товарных и биохимических свойств сырья. Чем выше массовая доля сухих веществ (сахаров и кислот, обеспечивающих хороший вкус продукта), тем выше технико–экономические показатели предприятия, так как возрастает выход готового продукта.

Ассортимент высушиваемых фруктов и ягод разнообразен: яблоки, айва, груша, слива, вишня, черешня, абрикосы, персики, виноград, малина, черная смородина и др.

Яблоки для сушки обычно используют кислых и кисло–сладких сортов с содержанием сухих веществ не менее 14 %. В зависимости от способа подготовки сырья различают следующие виды сушеных яблок культурных сортов: не очищенные от кожицы и не обработанные диоксидом серы; не очищенные от кожицы с удаленной семенной камерой и обработанные раствором сернистой кислоты или диоксидом серы; очищенные от кожицы с удаленной семенной камерой и обработанные раствором сернистой кислоты или окуренные серой.

Если готовят сушеные яблоки, очищенные от кожицы, с удалением семенной камеры, то плоды предварительно калибруют по размерам для очистки яблок машинами. При калибровании удаляют плоды диаметром менее 3,5 см, так как они непригодны для производства данного вида сушеных яблок.

После калибрования яблок по размерам их моют в вентиляторных или барабанных моечных машинах, инспектируют, удаляя плоды, поврежденные болезнями и вредителями, и подают на очистку.

На специальных машинах очищают плоды от кожицы, удаляют сердцевину.

Затем яблоки режут на кружки толщиной 5…6 мм и сульфитаруют, погружая на 1…2 мин в ванну с раствором 0,15%-й сернистой кислоты. После сульфитации на сетчатом транспортере стекает излишний раствор и сырье передают на наклонный конвейер, с помощью которого его загружают в сушилку.

Технологический процесс производства сушеной груши включает следующие операции: приемку, инспекцию, мойку, калибровку, резку, бланширование, сушку. Продукция с сырьевой площадки поступает в подготовительный цех, где на инспекционном транспортере удаляют недозрелые, пораженные болезнями и вредителями плоды. Затем груши моют в вентиляторных машинах с ополаскиванием под душем. Промытое сырье калибруют на два размера на ленточном транспортере. Мелкие груши с диаметром плодов не более 55 мм рекомендуют сушить целыми, более 55 мм — режут на половинки, четвертинки или дольки.

Нарезанные плоды собирают в сборник, наполненный 0,1 %-м раствором лимонной кислоты или 1…2%-м раствором поваренной соли для предупреждения потемнения. После стекания излишнего раствора нарезанные плоды укладывают на сита, которые устанавливают в вагонетки. Сушат груши до содержания влаги 24 %


написать администратору сайта