Главная страница

работа насоса на сеть. Лекция. 13. Работа насосов на сеть. 14 Баланс напоров потока в трубопроводе с включенным в него насосом. 14 Статический напор установки. 14 Потребный напор насосной установки


Скачать 424.73 Kb.
НазваниеЛекция. 13. Работа насосов на сеть. 14 Баланс напоров потока в трубопроводе с включенным в него насосом. 14 Статический напор установки. 14 Потребный напор насосной установки
Дата26.01.2023
Размер424.73 Kb.
Формат файлаdocx
Имя файларабота насоса на сеть.docx
ТипЛекция
#906186

13-я лекция.

13. РАБОТА НАСОСОВ НА СЕТЬ.

14.1.Баланс напоров потока в трубопроводе с включенным в него насосом.

14.2. Статический напор установки.

14.3. Потребный напор насосной установки.

14.4.Характеристика работы насоса.

14.4.1.Вакуум во всасывающей линии.

14.5. Регулирование подачи насоса.

14.6. Задачи о работе насосов на сеть.


14.7. Регулирование подачи насосной установки.

14.1.Баланс напоров потока в трубопроводе с включенным в него насосом.

При работе на сеть насосы рассматриваются, как источники, сообщающие жидкости энергию, при этом рабочий процесс насосов не рассматривается.

Для  решения задач о работе насосов на сеть используется баланс напоров потока в трубопроводе с включенным в него насосом.

При установившемся движении жидкости в трубопроводе включение в него насоса, как источника энергии, изменяет уравнение баланса напоров.

Напор насоса складывается из разности напоров в конечной и исходной точках плюс потери от начальной точки до конечной точки (рис. 14.1). Напор насоса  это энергия, сообщаемая насосом единице веса перекачиваемой жидкости.



                     

Hн +H1 = H+ ∑hп1-2,                     (14.3)

                                       Hн + H1 - hп.вс = H+ hп.н.,

где Н1 и Н2 — полные напоры потока в начальном 1 и конечном 2 сечениях трубопровода, ∑hп1-2=hп.вс.+ hп.н.— сумма потерь напора в трубопроводе между сечениями 1 и 2, то есть во всасывающем hп.вс -  и напорном канале hп.н..

Напор насоса затрачивается на увеличение напора потока и преодоление гидравлических сопротивлений в трубопроводе.

Напоры Н1 и Н2 – это напоры в т.1 и т.2. В уравнении напоров (14.1) не учитывается потери между всасывающим и напорным отверстием и (14.1) – это упрощенное уравнение баланса напоров.

14. 2. Статический напор установки.

Сеть, на которую работает насос, может быть простым или сложным трубопроводом, а также включать в ряде случаев гидродвигатели, преобразующие гидравлическую энергию, сообщенную потоку насосом, в полезную механическую работу.

Схема насосной установки при работе насоса на простой трубопровод показана на рис. 14.1. Насос перекачивает жидкость из приемного резервуара А в напорный резервуар В по трубопроводу, состоящему из всасывающей и нагнетательной труб.

Статическим напором установки называют разность гидростатических напоров жидкости в напорном и приемном резервуарах:

     (14.3)

Если давление на свободных поверхностях жидкости в резервуарах равно атмосферному, как для  установки, изображенной на рис. 14.1, статический напор представляет собой разность уровней жидкости в резервуарах:  , т.е. высоту подъема жидкости в установке.

 

Если давление в резервуарах при работе насоса не равно атмосферному, см. рис. 14.2, например, в питающем резервуаре имеется вакуум, а в напорном резервуаре - избыточное давление больше атмосферного, статический  напор равен разности пьезометрических уровней в резервуарах.  Статический напор установки

,

14.3. Потребный напор насосной установки.

Потребным напором установки Нпотр, называют энергию, которую необходимо сообщить единице веса жидкости для ее перемещения из приемного резервуара в напорный по трубопроводу установки при заданном расходе.

14.3.1. При работе насоса на длинный трубопровод, пренебрегают малыми скоростными напорами в резервуарах и скоростным напором на выходе, получим,   

                      (14.4)

где  ∑hп.н.= hп.вс.+hп.н. — сумма потерь напора:

hп.вс. - во всасывающей линии, включая потерю на входе во всасывающую  трубу;

hп.н. – в  напорной линии, включая потерю при выходе из нее в напорный резервуар.

14.3.2. При работе насоса на трубопровод, снабженный концевым сходящимся насадком  (рис. 14.3), скоростной напор на выходе из насадка сравним с потерями по длине в трубах и должен учитываться в уравнении потребного напора.



Потребный напор при учете  скоростного напора равен  

                       (14.5)

где V2/2g  - скоростной напор на выходе из напорной трубы (в предположении турбулентного режима, для которого α = 1). Если бы потери на всасывании были значительны, их необходимо было бы учитывать. Поэтому диаметры всасывающих трубопроводов делают больше напорных, существуют нормы на скорости потока во всывающем и в напорном трубопроводе.

14.3.3. При установившемся режиме работы установки, когда расход в системе трубопроводов не изменяется со временем, развиваемый насосом напор равен потребному напору установки:

Нн = Нпотр (14.6)

14.4. Характеристика насоса.

Характеристику насоса  при данной частоте вращения составляют следующие показатели:    

· подача (объемом жидкости, перемещаемым насосом в единицу времени) Q (м3/с),

· напор Н (дж/Н = м)

· потребляемая насосом мощность двигателя Nд, (Вт),

· полезная мощность насоса равна энергии, сообщаемой в единицу времени потоку жидкости, определяемая, как  произведение Nпн = Qн*ρgHн,

· КПД насоса равный отношению полезной мощности насоса Nпн к мощности,  потребляемой насосом, т.е. мощности двигателя Nдв:

                  (14.7)

Примерный вид характеристики насоса приведен на рис.14.6. Обычно характеристика задается в виде графика или в виде таблицы.



14.5.Вакуум во всасывающей линии.

Напор насоса при известной его подаче может быть измерен с помощью манометров V и М, установленных в его входном и выходном сечениях (рис.14.5). 

При расположении насоса над приемным уровнем, открытым в атмосферу, во входном сечении насоса возникает вакуум (избыточное давление Рвс < 0). Выделив подчеркиванием в уравнении 14.9 величины составляющие разряжение, получим значение вакуума во всасывающем патрубке насоса V:

     

Величина вакуума V на входе в насос  определяется высотой столба жидкости для установившегося движения во всасывающей линии, если давление над жидкостью в приемном резервуаре — атмосферное.

Каждому режиму работы насоса в данной установке соответствует  "допускаемая вакуумметрическая высота всасывания - Нвак.доп "(допускаемая величина вакуума): Нвак.доп  ≤  Рат, т.е. Нвак.доп<0.

Величина Нвак.доп зависит при данном режиме работы насоса от упругости паров жидкости и атмосферного давления.

Вакуум во всасывающем патрубке должен быть меньше "допускаемой вакуумметрическая высота всасывания" :    V ≤ Нвак.доп, то есть меньше, чем разрешенное разряжение, которое обеспечивает отсутствие кавитационных явлений в насосе. На рис.14.5 это можно понимать в том смысле, что сумма    V ≤ Нвак.доп.

Так как и при эксплуатации насоса должно выполняться это условие V ≤  Нвак.доп, с помощью формулы (14.10) определяется допускаемая геометрическая высота всасывания насоса Zвс.доп . Если Zвс.доп< 0 насос необходимо располагать ниже уровня в приемном резервуаре).

14.6. Работа насоса на сеть. Определение рабочей точки.

При работе насоса на сеть требуется определить рабочую точку или точку совместной работы насоса и установки, т.е. трубопровода.

Задана характеристика установки      и требуемая подача Qпотр, по характеристике установки подобрать насос для требуемой подачи Qпотр.

Методика построения рабочей точки.

1. Начало координат Q — Н располагают на пьезометрическом уровне в приемном (питающем) резервуаре, этот уровень  выбирается за начало отсчета напоров. 

2. На координатной плоскости Н—  Q строится характеристика насоса Hн = f(Q). Обычно она  задается графически или таблично.

3. Строится характеристика установки. Характеристика установки  является суммой Нст статического напора и характеристики трубопровода -  ∑hп

 (14.4),

в котором   ∑hп  — характеристика трубопровода или зависимость суммарных потерь напора в трубопроводе от расхода, включающая потери во всасывающем и напорном трубопроводе.

4. Рабочей точкой установки называется точка пересечения характеристик насоса и трубопровода. По рабочей точке находят величины Qпотр и Нпотр. 

5. При установившемся режиме работы найденные в точке пересечения величины Qпотр = Qн, Hпотр = Hн являются исходными для подбора насоса и  двигателя для привода насоса.

Расположение приемного резервуара может быть задано в трех вариантах:1)Нст>0; 2) Нст = 0; 3) Нст < 0, что отмечено на рис.14.6. В зависимости от характеристики установки положение рабочей точки будет разным.

Характеристика трубопровода зависит от режима движения жидкости в трубопроводе.

При турбулентном режиме характеристика трубопровода  близка  к квадратичной зависимости  ∑hп =k*Q2 . Коэффициент сопротивления трубопровода k равен сумме коэффициентов kвс всасывающей и напорной kн линий:

k = kвс + kн,

каждый из которых выражается формулой    .

Входящие в k величины постоянны, или задаются таковыми в первом приближении, если  какая-либо из них неизвестна, чаще других, это относится к  λ. Величиной λ задаются и строят график характеристики трубопровода в виде параболы.

Характеристику установки строят,  смещая ее по оси напоров на величину Нст, при Нст = 0 характеристика установки проходит через начало координат и в этом случае имеет вид

Нн =  ∑hп.

В этом случае в рабочей точке насоса напор целиком затрачивается на преодоление гидравлического сопротивления системы. К такому типу относятся циркуляционные установки, где приемный и напорный уровни совпадают (рис. 14.7).



При Нст < 0 (напорный уровень ниже приемного) жидкость может перетекать в нижний резервуар самотеком в количестве Qc, и насос применяется, если нужен расход больший, чем  Qнз >Qс (см. рис. 14.7).

Если движение в трубопроводе является ламинарным, характеристику трубопровода выражают формулой ∑hп = k*Q, в которой коэффициент k трубопровода равен

.

14.7. Регулирование подачи насоса.

Рабочая характеристика центробежного насоса имеет номинальные параметры, соответствующие долговременному и экономичному режиму работы. Однако возникает необходимость изменения характеристики насоса в соответствие с требованиями создаваемой установки. Существует несколько методов регулирования параметров насосной установки.

14.7.1. Регулирование подачи методом изменения частоты вращения насоса

Пересчет характеристик лопастного насоса при изменении частоты вращения двигателя (рис. 14.8) производится с помощью законов пропорциональности, выражающих свойства подобных режимов работы данного насоса при разных частотах вращения. При этом методе изменяется  характеристика насоса, и рабочая точка перемещается по заданной неизменной характеристике установки (рис. 14.8).



Точки каждого семейства подобных режимов лежат в координатах Qн-Н на квадратичной параболе, вершина которой находится в начале координат, это парабола подобных режимов. (рис. 14.8).



При использовании законов пропорциональности касающихся расхода, напора, мощности, делаются следующие допущения.

1. Считается, что сравниваемые подобные режимы находятся в зоне турбулентной автомодельности и изменение числа Рейнольдса не влияет на распределение скоростей в каналах насоса и на их коэффициенты сопротивления.

2. Допускается, что для подобных режимов значения КПД насоса можно приближенно принимать одинаковыми (η1 = η2).

3.Допускается, что насос работает на одной и той же жидкости (ρ1= ρ2).



14.7.2.Методика определения новой частоты вращения центробежного насоса при необходимости  изменения его подачи (рис.14.9).

Заданы: а) характеристика насоса при n об/мин; б) характеристика трубопровода (установки). в)Точка А их пересечения является рабочей точкой системы: Qн и Нн -  подача и напор насоса для этой рабочей точки.

Требуется определить новую частоту вращения насоса nx, при которой подача QI увеличится (или уменьшится) на m %.



Методика определения частоты.

1. Строятся характеристики насоса и трубопровода (рис.14.9а и 14.9б).

2. По заданному изменению подачи (на ± m%) находим величину QI и откладываем это значение на оси абсцисс.

3. Проводим вертикальную прямую QI до пересечения с  характеристикой трубопровода, получаем  новую рабочую точку В (QI и HI) установки. Через эту точку должна пройти характеристика насоса при искомой частоте вращения nx.

4. Определяем коэффициент параболы подобных режимов по значениям QI и HI.

k = HI /QI2

5. Строим параболу подобных режимов Hпар.п.р= k*Q2   и находим точку ее пересечения с характеристикой насоса -  С.

6. По значениям  QII и HII в точке С определяем число оборотов насоса по формулам подобия.



14.7.1. Регулирование подачи насосной установки методом дросселирования.

Подачу центробежного (лопастного) насоса можно регулировать методом дросселирования, устанавливая в трубопроводе дроссель с изменяемым сопротивлением (задвижку, вентиль, кран и др.). При изменении открытия дросселя изменяется характеристика установки (крутизна характеристики трубопровода) и рабочая точка перемещается по заданной характеристике насоса (рис. 14.10). Этот способ регулирования подачи связан с дополнительными потерями энергии в дросселе и поэтому неэкономичен.



Подачу лопастных насосов можно также регулировать перепуском жидкости из напорной линии во всасывающую (или в приемный резервуар) через обводную трубу с регулируемым дросселем .

14.9. Регулирование подачи с использованием обводной линии.

На рис. 14.11 дано решение задачи о работе центробежного насоса в установке, снабженной обводной трубой, по которой для регулирования подачи насоса жидкость перепускается из напорной линии во всасывающую.

1. Задается характеристика насоса и величина потребного расхода Qпотр.

2.От Нст строится характеристика установки Нуст= Нст+hAD.

3.Строится характеристика трубопровода  h= hCFB.

3. Строится совместная  характеристика трубопровода hAD+hCFB.

4.Находится рабочая точка А: пересечение характеристики  hAD+hCFB с характеристикой насоса, находятся значения   Qн и Нн.

5. Проводится линия Нн параллельная оси абсцисс, при пересечении ее с характеристикой    hCFB =f(Q) находится т.В, в которой определяется расход перетечки q через обводную линию и расход в линии СD – Q. Qн = q + Q



14.8. Задачи о работе насоса на сложный  (разветвленный)

трубопровод.

Рассматриваются две задачи со схемами: работа насоса на трубопровод с параллельными ветвями и на трубопровод с концевой раздачей.

В первом случае задача решается так же, как и при работе на простой трубопровод, с помощью суммарной характеристики сложного трубопровода, включающей сопротивление его разветвленного участка.

Во втором случае при концевой раздаче рассматривается режим работы центробежного насоса на два напорных резервуара с разными уровнями -  гидростатическими напорами жидкости.

В зависимости от соотношений между элементами установки насос может перекачивать жидкость из приемного резервуара  А в оба резервуара С и В или может питать вместе с верхним резервуаром В нижний резервуар С.

Решение основано на определении пьезометрического уровня в узле В, при котором выполняется условие баланса расходов в трубах, примыкающих к узлу.

1. Характеристика насоса задана графиком.

2. Величина потерь во всасывающем hAN = hвс трубопроводе и напорном трубопроводе h = hн может быть определена по формулам:   ∑hп =kQ2,     ∑hп = k*Q.

3. Используя эти формулы можно построить график зависимости напора (пьезометрического уровня) в узле В от подачи насоса, вычитая из ординат напорной характеристики насоса потери напора в трубе АNВ (кривая НВ)

НВ = Нн – hвс- hн.

4. Найдя точку I пересечения линии напора Нв с с характеристикой трубы ВС, построенной от пьезометрического уровня в резервуаре С, определим направление движения в трубе ВD, ведущей в верхний резервуар.

.



Если эта точка I  расположена выше уровня в резервуаре В, то насос питает оба резервуара.

5. В этом случае строим зависимость суммарного расхода в трубах ВС и ВD от пьезометрического уровня в узле В, точка ее пересечения с кривой Нв определяет пьезометрический уровень в узле В, расходы в трубах и режим работы насоса (рабочую точку системы).

6. Если точка пересечения линии Нв и ВС' расположена ниже уровня в резервуаре D, последний питает совместно с насосом резервуар С. В этом случае (штриховые линии на рис. 14.12) строят зависимость суммарного расхода в трубах АВ и ВВ от пьезометрического уровня в узле В (путем суммирования кривых Нв и ВВ по расходам); точка пересечения этой кривой с характеристикой трубы ВС’ является рабочей точкой системы.

8. При параллельной или последовательной работе нескольких насосов для определения режима работы системы следует предварительно построить суммарную характеристику насосов, а затем найти рабочую точку системы обычным способом, т.е. пересечением характеристики насосов с характеристикой установки.

Для построения суммарной характеристики насосов при параллельном их соединении необходимо сложить характеристики насосов по абсциссам (подачам), а при последовательном соединении — по ординатам (панорам).

14.9. Работа параллельных насосов и последовательно

соединенных насосов на простой трубопровод.

На рис. 14.14 показана схема параллельной работы центробежных насосов на простой трубопровод и дано графическое решение этой задачи.





14.10. Особенности работы на сеть насосов объемного типа.

Для объемных насосов (поршневых, роторных и др.) подачу Qн можно в первом приближении принимать не зависящей от развиваемого насосом напора Нн и пропорциональной частоте вращения насоса. Подача поршневого насоса, например, определяется по формуле

,                                         (4.15)

где F и S — площадь и ход поршня; n — число двойных ходов поршня в минуту (частота вращения коленчатого вала); z — число рабочих камер (цилиндров) насоса; ηо — коэффициент подачи насоса. В общем виде подача объемных насосов различного типа выражается формулой



где W— рабочий объем насоса (подача его за один оборот вала), зависящий от типа и размеров насоса.

При указанном приближении линии напора Нн = f(Qн) на характеристиках объемных насосов можно показать в виде вертикальных прямых Qн =const, каждая из которых соответствует определенной частоте вращения насоса (рис. 14.16). В действительности подача любого объемного насоса при данной частоте вращения несколько уменьшается с ростом напора насоса.

Определение режима работы объемного насоса в гидросистеме производится так же, как и для лопастного насоса, путем построения на одном графике в координатах Q - Н характеристик насоса и гидросистемы и нахождения точки их пересечения  - рабочая точка системы.

Поскольку подача объемных насосов почти не зависит от напора, способ регулирования подачи дросселированием к объемным насосам неприменим (полное закрытие дросселя на выходе из объемного насоса может повлечь за собой аварию, если не предусмотреть специальных предохранительных устройств).

Регулирование подачи в гидросистемах и установках с объемными насосами может осуществляться изменением частоты вращения насоса (см.рис. 14.16) или применением специальных насосов с переменной подачей, в которых на ходу изменяется рабочий объем W.  Однако в большинстве случаев регулирование подачи в гидросистемах с объемными насосами производится менее экономичным, но наиболее простым способом перепуска жидкости из напорной линии во всасывающую. Для этой цели применяются различные регулируемые дроссели и переливные клапаны, а также автоматы разгрузки и другие специальные устройства.



На рис. 14.17 показана схема насосной установки с объемным насосом и перепускной трубой, снабженной регулируемым дросселем.



Для определения режима работы насоса при заданном давлении Ро в напорном баке и некотором открытии дросселя можно воспользоваться графическим построением, приведенным на рис. 14.13. При решении аналогичной задачи с лопастным насосом перепускная труба рассматривалась как ответвление трубопровода, на который работает насос с заданной характеристикой.

В ряде случаев более удобным является другой способ решения этой задачи, при котором перепускная труба рассматривается как дополнительный элемент самого насоса, изменяющий его рабочую характеристику. Нанеся на общий график в координатах Q  —Н характеристику насоса и характеристику перепускной трубы, следует из первой вычесть вторую по расходам для этого нужно при различных значениях напора насоса вычитать из его подачи расходы в перепускной трубе (поскольку располагаемый напор перепускной трубы равен напору насоса).

Полученная в результате кривая АВ представляет характеристику насоса вместе с перепускной трубой. Пересечение этой кривой с характеристикой гидросистемы (кривая LD определяет рабочую точку системы (точка В), т.е. расходы Q в напорный бак и в перепускной трубе q, а также подачу Qп и напор насоса Нн (рабочая точка насоса С).

При любом другом открытии дросселя изменяется его характеристика, а следовательно, и характеристика насоса вместе с перепускной трубой; при этом рабочая точка системы смещается.

На рис. 14.18 схематически показана установка с объемным насосом и переливным, пружина которого отрегулирована па заданное давление Нрасч, определяющее момент его открытия. На графике показано определение режимов работы насоса, т.е. нахождение рабочих точек, при трех различных давлениях в напорном баке.



Для определения режимов работы насоса следует, как и в предыдущей схеме, из характеристики насоса вычесть характеристику переливного клапана, т.е. получить суммарную характеристику насоса вместе с клапаном (линия АВС). Точки пересечения этой кривой с характеристиками гидросистемы в трех указанных случаях определяют рабочие точки 1, II, III насоса.

Как видно на рис. 14.18, при напорах насоса Нн < Нрасч (случай 3) вся подача насоса идет в напорный бак; при Н > Нрасч (случаи 1 и 2) часть подачи насоса возвращается на сторону всасывания.

Применяя разобранные способы решения задач о работе объемных насосов на сеть, следует иметь в виду, что опытные характеристики объемных насосов обычно даются в виде зависимостей подачи насоса Qн‚ и его КПД от давления насоса Рн(рис. 14.19).

Если Вам понравилась эта лекция, то понравится и эта - 1.2. Жидкость и силы действующие на нее.


написать администратору сайта