Задание N2 - БС. Программирование на Pascal. Задание N2. Простые геометрические вычисления
Скачать 36.5 Kb.
|
Программирование на Pascal. Задание N2. Простые геометрические вычисления. Для всех вариантов и заданий: - В заголовок окна программы записать свои данные: имя, фамилию и номер варианта. - Ввод и вывод данных осуществлять в числовых форматах. Ввод всех исходных данных производить с клавиатуры. Вывод чисел вещественных типов производить в форматированном виде с точностью до 2-х знаков после точки. Группа БС: 1. Даны три вещественных числа x,y,z. Определить, существует ли треугольник с длинами сторон x,y,z. Если треугольник существует, определить его тип (равносторонний, равнобедренный, прямоугольный) и вычислить все углы в градусах. Напечатать длины сторон с противолежащими углами. 2. Произвольный треугольник задан декартовыми координатами своих вершин (X1,Y1),(X2,Y2),(X3,Y3) – целыми числами. Определить, можно ли в него поместить окружность радиуса R(вещественное число). 3. Даны два отрезка А и В, заданные координатами их концов (АX1,АY1),(АX2,АY2) и (ВX1,ВY1),(ВX2,ВY2) – целыми числами. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точки их пересечения. 4. Отрезок, заданный координатами концов (X1,Y1),(X2,Y2) – целыми числами, определяет прямую, делящую пространство на две полуплоскости. Даны две точки А и В, заданные координатами (АX,АY) и (ВX,ВY) – целыми числами. Определить, расположены ли точки в одной полуплоскости, т.е. по одну сторону от прямой. 5. Луч, заданный координатами точки (X,Y) и углом ALPHA в градусах – целыми числами, определяет прямую, делящую пространство на две полуплоскости. Даны две точки А и В, заданные координатами (АX,АY) и (ВX,ВY) – целыми числами. Определить, расположены ли точки в одной полуплоскости, т.е. по одну сторону от прямой. 6. Произвольный треугольник задан декартовыми координатами своих вершин (X1,Y1),(X2,Y2),(X3,Y3) – целыми числами. Выяснить, принадлежит ли этому треугольнику точка с координатами (X,Y) – целыми числами, т.е. находится ли она внутри него или на ребре. 7. Даны две окружности одинакового радиуса R, заданные координатами их центров (X1,Y1),(X2,Y2) – целыми числами. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точек их пересечения. 8. Дана окружность радиуса R, с центром в точке С (СХ,СY) и отрезок, заданный координатами концов (X1,Y1),(X2,Y2) – все числа целого типа. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точек их пересечения. 9. Даны три вещественных числа x,y,z. Определить, существует ли треугольник с длинами сторон x,y,z. Если треугольник существует, определить его тип (равносторонний, равнобедренный, прямоугольный) и вычислить все углы в градусах. Напечатать длины сторон с противолежащими углами. 10. Произвольный треугольник задан декартовыми координатами своих вершин (X1,Y1),(X2,Y2),(X3,Y3) – целыми числами. Определить, может ли он поместиться внутри окружности радиуса R(вещественное число). 11. Даны два отрезка А и В, заданные координатами их концов (АX1,АY1),(АX2,АY2) и (ВX1,ВY1),(ВX2,ВY2) – целыми числами. Вычислить угол в градусах (вещественное число), под которым они расположены относительно друг друга. 12. Даны два отрезка А и В, заданные координатами их концов (АX1,АY1),(АX2,АY2) и (ВX1,ВY1),(ВX2,ВY2) – целыми числами. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точки их пересечения. 13. Отрезок, заданный координатами концов (X1,Y1),(X2,Y2) – целыми числами, определяет прямую, делящую пространство на две полуплоскости. Даны две точки А и В, заданные координатами (АX,АY) и (ВX,ВY) – целыми числами. Определить, расположены ли точки в одной полуплоскости, т.е. по одну сторону от прямой. 14. Луч, заданный координатами точки (X,Y) и углом ALPHA в градусах – целыми числами, определяет прямую, делящую пространство на две полуплоскости. Даны две точки А и В, заданные координатами (АX,АY) и (ВX,ВY) – целыми числами. Определить, расположены ли точки в одной полуплоскости, т.е. по одну сторону от прямой. 15. Произвольный треугольник задан декартовыми координатами своих вершин (X1,Y1),(X2,Y2),(X3,Y3) – целыми числами. Выяснить, принадлежит ли этому треугольнику точка с координатами (X,Y) – целыми числами, т.е. находится ли она внутри него или на ребре. 16. Даны две окружности одинакового радиуса R, заданные координатами их центров (X1,Y1),(X2,Y2) – целыми числами. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точек их пересечения. 17. Дана окружность радиуса R, с центром в точке С (СХ,СY) и отрезок, заданный координатами концов (X1,Y1),(X2,Y2) – все числа целого типа. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точек их пересечения. 18. Даны три вещественных числа x,y,z. Определить, существует ли треугольник с длинами сторон x,y,z. Если треугольник существует, определить его тип (равносторонний, равнобедренный, прямоугольный) и вычислить все углы в градусах. Напечатать длины сторон с противолежащими углами. 19. Произвольный треугольник задан декартовыми координатами своих вершин (X1,Y1),(X2,Y2),(X3,Y3) – целыми числами. Определить, можно ли в него поместить окружность радиуса R(вещественное число). 20. Даны два отрезка А и В, заданные координатами их концов (АX1,АY1),(АX2,АY2) и (ВX1,ВY1),(ВX2,ВY2) – целыми числами. Определить, пересекаются ли они, в этом случае вычислить координаты (вещественные числа) точки их пересечения. 21. Произвольный треугольник задан декартовыми координатами своих вершин (X1,Y1),(X2,Y2),(X3,Y3) – целыми числами. Определить, можно ли вокруг него описать окружность радиуса R(вещественное число). 22. Даны два отрезка А и В, заданные координатами их концов (АX1,АY1),(АX2,АY2) и (ВX1,ВY1),(ВX2,ВY2) – целыми числами. Вычислить угол в градусах (вещественное число), под которым пересекаются прямые, определяемые этими отрезками. |