Главная страница
Навигация по странице:

  • Введение

  • Эмбриональный период (1–23 стадии по Carnegie)

  • Образование нервного гребня

  • Фетальный период развития (24–46 стадии по Carnegie)

  • Дифференцировка нервной трубки и формирование основных отделов мозга

  • Список литературы

  • История Росии. анатомия. Развитие нервной системы в эмбриогенезе по учебной дисциплине Анатомия центральной нервной системы


    Скачать 30.98 Kb.
    НазваниеРазвитие нервной системы в эмбриогенезе по учебной дисциплине Анатомия центральной нервной системы
    АнкорИстория Росии
    Дата02.04.2022
    Размер30.98 Kb.
    Формат файлаdocx
    Имя файлаанатомия.docx
    ТипКонтрольная работа
    #436807


    Частное учреждение образовательная организация высшего образования

    "Омская гуманитарная академия"

    КОНТРОЛЬНАЯ РАБОТА
    на тему: Развитие нервной системы в эмбриогенезе

    по учебной дисциплине: Анатомия центральной нервной системы

    Выполнила: Турсунходжаева. Д.Х

    Направление подготовки:

    Психология, Реклама и связи с

    общественностью, Социальная работа

    Форма обучения: заочная

    Оценка:

    ____________________________

    ____________________________

    Подпись Фамилия И.О.

    “____”________________20___ г.


    Оглавление





    Оглавление 2

    Введение 3

    Эмбриональный период (1–23 стадии по Carnegie) 5

    Образование нервного гребня 8

    Фетальный период развития (24–46 стадии по Carnegie) 10

    Дифференцировка нервной трубки и формирование основных отделов мозга 13

    Список литературы 14



    Введение

    Нервная система всех позвоночных, включая человека, развивается из элементов наружного зародышевого листка – эктодермы. Этот процесс имеет определенные особенности у представителей разных групп, однако ему свойственны и общие для всех позвоночных закономерности.

    В период гаструляции у высших позвоночных (у человека это конец 1-й недели развития и совпадает с имплантацией в стенку матки) происходят активные перемещения клеточного материала зародыша. В первой фазе гаструляции образуются два эмбриональных зародышевых листка – эпибласт (верхний листок) и гипобласт (нижний). Клетки эпибласта постепенно расходятся, образуя заполненную жидкостью амниотическую полость. Во второй фазе гаструляции небольшая группа клеток эпибласта, сформировавшая в дне амниотической полости зародышевый щиток, образует первичную полоску и гензеновский узелок. Последующая миграция клеток этих структур вглубь зародыша приводит к формированию среднего листка зародыша – мезодермы. Гаструляция завершается у всех позвоночных образованием трех зародышевых листков: эктодермы, мезодермы и энтодермы, а также формированием осевого комплекса зачатков органов. Особое значение на этом этапе развития принадлежит т.н. головному отростку (нотохорду), формирующемуся из мигрирующих клеток гензеновского узелка. К концу гаструляции формируются и все основные, соответствующие разным группам животных провизорные органы (желточный мешок, амнион, аллантоис, хорион, плацента), выполняющие защитные и питательные функции для эмбриона. Их число в ходе эволюции увеличивается. У человека гаструляция завершается к третьей недели внутриутробного развития.

    Головной отросток дает начало развитию нотохорды – оси будущего зародыша. Клетки нотохорды и формирующейся затем хорды оказывают индуцирующее влияние на дифференцировку прилежащего к ним участка эктодермы в нервную пластинку и далее в нервную трубку Как только развивается нотохорд, расположенная над ним эктодерма начинает утолщаться и формирует нервную пластинку, элементы которой интенсивно размножаются и дифференцируются, превращаясь в узкие цилиндрические нейроэпителиальные клетки, отличные от соседних клеток покровного эпителия. Основной причиной формирования нервной пластинки и замыкания ее в нервную трубку является преобразование нейроэпителиальных клеток, связанное с изменением ориентации компонентов их актинового цитоскелета. В результате интенсивного деления и неравномерного роста нейроэпителия происходит его инвагинация с последующим формированием нервной трубки.
    Эмбриональный период (1–23 стадии по Carnegie)

    В этот период развития на дорсальной стороне зародыша происходит обособление особого участка нейроэпителия и формирование нервной пластинки (neuronal plate) и начинаются процессы нейруляции.

    На стадии нейруляции происходит формирование нескольких важных структур нервной системы: образуется нервная пластинка с последующим образованием нервной трубки и нервного гребня Нейруляция у человека начинается в конце 3-й недели и полностью завершается к концу 4-й недели.

    Вскоре после образования нервной пластинки (приблизительно на 18-е сутки у человека) она прогибается вдоль продольной оси, ее края приподнимаются и формируются нервный желобок и нервные валики. Позднее края нервных валиков смыкаются по срединной линии и образуется замкнутая нервная трубка. Краниальный и каудальный участки нервной трубки долго остаются незамкнутыми, их называют соответственно передним и задним нейропорами. Передний нейропор закрывается на 23–26-й день развития, а задний – на 26–30-й день.

    Процесс нейрональной индукции связан с синтезом ряда биологически активных соединений, которые действуют на формирование нервной пластинки и нервной трубки. На клетки первичной эктодермы действует большое количество сигнальных молекул, индуцирующих процесс образования нейроэпителия и нейрональных стволовых клеток, из которых будут формироваться все элементы нервной ткани. Среди этих факторов необходимо отметить хордин (chordin), ноггин (noggin) и фоллистатин (follistatin), синтезируемые клетками первичной мезодермы, образующей нотохорду (будущая хорда и позвоночник). Они блокируют действие другого морфо-генетического фактора – BMP (bone morphogenetic protein), синтезируемого клетками эктодермы и индуцируют их дифференцировку в направлении образования нейроэпителия нервной пластинки

    Уже на ранних этапах развития зародыша нервная трубка на значительном протяжении разделяется проходящей по вентрикулярной поверхности пограничной бороздой, sulcus limitans, на два отдела: дорсальный – крыловидную пластинку, и вентральный – базальную пластинку. Участки мозга, развивающиеся из крыловидной пластинки, содержат ассоциативные и сенсорные ядра, из базальной – моторные и вегетативные. Самая ростральная часть (prosencephalon) не содержит базальной пластинки и целиком происходит из крыловидной. Отделы головного мозга, содержащие производные обеих пластинок – средний, задний, продолговатый – часто объединяют названием «ствол мозга».

    На этапе формирования нервных желобков дифференцировку вентральной части нервной трубки (базальной пластинки) и развитие мотонейронов оказывает регулирующее влияние фактор Shh (sonic hedgehog) секретируемый сначала нотохордой, а затем хордой и вентральной частью самой нервной трубки. Дорсальную часть нервной трубки (крыловидную пластинку) контролируют морфогенетические белки BMP4 и MBP7, секретируемые клетками эктодермы, и ряд других ростовых и транскрипционных факторов: Pax 3, 4, 6 – транскрипционные факторы, FGF8 – фактор роста фибробластов, GDNF – нейротрофический фактор глии, BDNF, NT3,4 – нейротрофические факторы мозга и др

    Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:

    1. внутренняя – вентрикулярная (или эпендимная) зона,

    2. вокруг нее – субвентрикулярная зона,

    3. затем промежуточная (плащевая или мантийная, зона),

    4. наружная – краевая (или маргинальная) зона нервной трубки.

    Вентрикулярная (VZ) зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные или иначе матричные клетки являются по сути нейрональными стволовыми клетками, т.е. предшественниками нейронов и клеток макроглии. Субвентрикулярная зона (SVZ) состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток. Промежуточная (плащевая или мантийная) зона (PZ) состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон – это зона активной миграции и дифференцировки молодых нейронов (нейробластов) и глии (глиобластов). Наружная (маргинальная MZ) зона содержит нервные волокна и отростки находящихся ниже нейронов. Нейробласты достигают мест своего окончательного расположения в структурах ЦНС; утрачивают способность к делению и в дальнейшем дифференцируются в зрелые нейроны. Глиобласты продолжают делиться и дают начало новым популяциям глиальных клеток: астроцитам и олигодендроцитам.
    Образование нервного гребня

    После смыкания валиков и образования нервной трубки, на ее боковых поверхностях выселяется группа клеток, формирующих т. н. нервный гребень (neural crest)  Клетки нервного гребня активно и целенаправленно мигрируют на большие расстояния в зародыше и способны дифференцироваться в разнообразные зрелые элементы тканей и органов. Миграция клеток определяется не только и не столько наличием свободного межклеточного пространства и отсутствием механических преград на пути перемещения, сколько взаимодействием мигрирующих клеток с молекулами межклеточного матрикса (коллаген, ламилин, фибронектин, аминоглюкозгликаны и др.). Формирование фенотипа клеток нервного гребня определяют многочисленные ростовые и дифференцирующие факторы, действующие на клетки гребня по ходу их миграции. В качестве примера можно привести процесс дифференцировки клеток туловищного отдела нервного гребня в нейроны симпатических ганглиев или в клетки хромаффинной ткани мозгового вещества надпочечников Клетки нервного гребня образуются почти на всём протяжении замыкающейся нервной трубки. Клетки из различных участков нервного гребня дифференцируются не одинаково. Разная дифференцировка клеток наблюдается как по длине гребня, так и по глубине залегания в нем. Из гребня могут образовываться и нервные узлы и большая часть структур черепа. Уникальность этой структуры позволила современным ученым даже считать нервный гребень четвертым зародышевым листком, наряду с эктодермой, энтодермой и мезодермой. Вот неполный список производных клеток нервного гребня:

    1. Нервные узлы спинных корешков спинномозговых нервов (часто их называют просто спинальными ганглиями).

    2. Нервные узлы вегетативной нервной системы (симпатической, парасимпатической и метасимпатической).

    3. Мозговое вещество надпочечников.

    4. Шванновские глиальные клетки, образующие оболочку отростков нейронов.

    5. Внутренняя выстилка (эндотелий) и гладкомышечный слой некоторых сосудов, в том числе аорты.

    6. Ресничные мышцы, сужающие и расширяющие зрачок.

    7. Одонтобласты – клетки, выделяющие дентин, твердое вещество зубов.

    8. Пигментные клетки покровов: эритрофоры (красные), ксантофоры (желтые), иридофоры (отражающие), меланофоры и меланоциты (черные).

    9. Часть адипоцитов – клеток жировой ткани.

    10. Парафолликулярные клетки щитовидной железы, выделяющие гормон кальцитонин.

    11. Хрящи и кости черепа, в первую очередь его висцерального (глоточного) отдела, в который входят не только жаберные дуги, но и челюсти.


    Фетальный период развития (24–46 стадии по Carnegie)

    развитии мозга. Сразу после завершения нейруляции и образования первичных мозговых пузырей, в стенке эмбрионального мозга начинаются интенсивные процессы пролиферации и дифференцировки. Процессы пролиферации и дифференцировки захватывают широкую полосу клеток, расположенных между наружной (базальной) и внутренней (апикальной) поверхностями стенки мозговых пузырей. Они представляют собой нейрональные стволовые клетки (НСК) и развиваются из нейроэпителия нервной пластинки. НСК активно делятся и в процессе прохождения клеточного цикла претерпевают сложные превращения, связанные с последовательными перемещениями в нервной трубке. Перемещение осуществляются путем смешения ядросодержащих отделов клеток внутри формирующихся отростков. Этот процесс получил название интеркинетической ядерной миграции. Ядросодержащие тела клеток двигаются к поверхности нервной трубки, вблизи которой они остаются на некоторое время. Затем ядросодержащие отделы клеток опять перемещаются к вентрикулярной поверхности, после чего НСК втягивают свои отростки и вступают в очередной митотический цикл (M). В результате формируется одно из первых структурных образований развивающейся стенки нервной трубки – вентрикулярный слой

    В настоящее время показано, что популяции клеток, составляющих вентрикулярный и формирующийся несколько позднее субвентрикулярный слой, неоднородна. Не все клетки, перемещающиеся в пределах стенки мозга во время митотического цикла, вступают в митоз у вентрикулярной поверхности. В зависимости от присутствия у клеток отростков и характера их контакта с поверхностями стенки мозга выделяют три класса клеток предшественников: монополярныебиполярные и неполярные 

    Биполярные клетки (или апикальные предшественники АР) представляют собой либо НСК клетки, либо клетки т. н. радиальной глии (RG), в которые НСК превращаются на самых ранних этапах нейрогенеза. Отличительной особенностью этих клеток является наличие отростков, контактирующих с апикальной и базальной поверхностями стенки мозга на всем протяжении клеточного цикла. Интеркинетические перемещения ядра происходят по этим отросткам и заканчиваются митозом у апикальной поверхности. Монополярные предшественники появляются на более поздних стадиях, когда в стенке мозга формируется субвентрикулярный слой, содержащий также как и вентрикулярный слой НСК. Ядра этих клеток претерпевают интеркинетические перемещения по цитоплазме отростков клеток предшественников, однако в процессе митотического цикла их апикальные или базальные отростки могут терять связь соответственно с апикальной или базальной поверхностями стенки мозга. Митозы происходят как в вентрикулярном слое, так и в верхней области субвентрикулярного слоя. Во внутренних слоях субвентрикулярной зоны у человека недавно были обнаружены клетки предшественники с неполярной морфологией. Характерной чертой этих клеток является ретракция отростков перед митозом и потеря их контакта с апикальной и базальной поверхностью стенки мозга. Они получили наименование «базальные предшественники (ВР).

    Фактически мы имеем дело с двумя путями образования нейронов в развивающемся мозге. Это – путь прямого нейрогенеза, когда источником нейробластов являются непосредственно НСК и нейрогенная радиальная глия, т. е. апикальные предшественники с моно- или биполярной морфологией, и путь непрямого нейрогенеза, когда источником нейробластов служат промежуточные нейрональные предшественники, являющиеся потомками клеток радиальной глии, т. е. базальные предшественникиНепрямой путь кортикогенеза может выступать в роли быстрого увеличения количества нейронов в условиях ограниченного времени (каждое асимметричное деление радиальной глии через стадию промежуточного нейронального предшественника может давать два – четыре нейрона) и тем самым регулировать площадь и толщину стенки мозга.

    Таким образом, на первых этапах формирования нервной системы, в стенке эмбрионального мозга формируется широкий слой пролиферирующих нейрональных предшественников разного типа, активность которых в дальнейшем приводит к формированию будущих популяций нервных и глиальных клеток в различных отделах мозга.
    Дифференцировка нервной трубки и формирование основных отделов мозга

    Замыкание нервной трубки начинается в середине зародыша, затем процесс распространяется к головному и хвостовому концам эмбриона, где некоторое время остаются незамкнутыми отверстия – передний и задний нейропоры. Еще на стадии замыкания нейропоров начинается ростро-каудальная дифференцировка нервной трубки зародыша. Нервная трубка (как полагают, под индуцирующим воздействием хорды) постепенно погружается в мезодерму зародыша и под влиянием мезодермальных сомитов разделяется на сегментарные участки – нейромеры или прозомеры. Сомиты располагаются по сторонам нервной пластинки и вдавливаются в нее, определяя конфигурацию будущих отделов мозга. В дальнейшем головные сомиты сливаются и образуют три основных сегмента: премандибулярный, мандибулярный и гиоидный. Границей головных сегментов служит область ушной капсулы, за которой формируются от 2–3 до 10–12 туловищных сегментов (в зависимости от группы позвоночных). Параллельно формируется система черепно-мозговых нервов. Каждый сегмент иннервируется определенными парами нервов: премандибулярный – терминальным и глазодвигательным нервом (III); мандибулярный – тройничным (V) и блоковым (IV) нервами; гиоидный – отводящим (VI) и лицевым (VII) нервами. Следующие за головными два сегмента иннервируются соответственно языкоглоточным (IX) и блуждающим (X) нервами. Ростральные туловищные сомиты у высших позвоночных иннервируются системой добавочного нерва (XI), включающего в себя разное количество корешков в зависимости от числа туловищных сомитов. Подъязычный нерв (XII), иннервирующий гипобранхиальную мускулатуру, которая развивается из закладки туловищных сегментов, по своей функции аналогичен вентральным (соматомоторным) корешкам спинномозговых нервов, иннервирующих поперечнополосатую мускулатуру туловища и конечностей.

    Список литературы

    1. Волькович Э.И. Общая и медицинская эмбриология. Учебное пособие для медицинских вузов. СПб: Фолиант. 2003. 316 с.

    2. Данилов Р.К., Боровая Т.Г. Курс эмбриологии с основами тератологии: учебник. СПб.: ВМА. 2016. 316 с.

    3. Кнорре А.Г. Краткий очерк эмбриологии человека с элементами общей, сравнительной и экспериментальной эмбриологии. Л.: Медгиз. 1959. 222 с.

    4. Нейроонтогенез (Серия: Проблемы биологии развития) М.: Наука. 1985. 270 с.

    5. Обухов Д.К. Современные представления о развитии, структуре и эволюции неокортекса конечного мозга млекопитающих животных и человека // В сб.: Вопросы морфологии XXI века, 2008. Вып. 1. С. 200–223.

    6. Обухов Д.К., Андреева Н.Г. Эволюционная морфология нервной системы позвоночных. М.: Юрайт. 2017. 384 с.

    7. Оленев С.Н. Развивающийся мозг Л.: Медицина. 1978. 180 с.

    8. Руководство по гистологии (в 2-х томах). СПб.: СПЕЦЛИТ. 2011. Т. 1. 831 с.

    9. Фалин Л.И. Эмбриология человека. Атлас. (Falin L.I. Human embryology. Atlas). М.: Медицина. 1976. 543 с.

    10. Шаде Дж., Форд Д. Основы неврологии. М.: Мир. 1976. 280 с.

    11. Baker K. Neuronal crest and cranial ectodermal placodes. In: Development of the Nervous system, 2006 (2 ed.) (Sanes D.H., Ren T.A., Harris W.A. eds.) Elsevier Acad. Press. 2006.

    12. Gilbert S.F. Developmental biology (8 ed.). USA, 2006. 817 p.

    13. Moore K.L., Lutjen-Drecol E. Embryologie – Studgart–New-York: 1980. 415 p.

    14. Development of the Nervous system, 2006 (2 ed.) (Sanes D.H., Ren T.A., Harris W.A. eds.) Elsevier Acad. Press. 2006. 372 P.

    15. Developmental neurobiology (Rao M., Jacobson M. eds.). Plenum Publ. Press. New-York. 2005. 350 p.

    16. Echevarria D., Vieira C., Gimeno L., Martinez S. Neuroepithelial secondary organizers and cell fate specification in the developing brain // Br. Res. Rev., 2003. V. 43. P. 179–191.

    17. Le Douarin N.M., Kalcheim C. The neural crest. Cambridge Univ. Press. 1999. 580 p.

    18. Nieuwenhuys R., Voogd J., van Huijzen C. The human central nervous system. (4 ed.). Springer. Berlin–Heidelberg–New-York. 2008. 970 p.




    2021


    написать администратору сайта