Главная страница
Навигация по странице:

  • 1. Медно-цинковые сплавы. Латуни

  • Алюмель

  • Ааа. Материалы, применмые в машиностроении. Реферат Материалы, применяемые в машиностроении Выполнил а Ягудина А. Р


    Скачать 115.31 Kb.
    НазваниеРеферат Материалы, применяемые в машиностроении Выполнил а Ягудина А. Р
    Дата25.09.2022
    Размер115.31 Kb.
    Формат файлаdoc
    Имя файлаМатериалы, применмые в машиностроении.doc
    ТипРеферат
    #694750


    Пермский государственный технический университет

    Кафедра Материаловедение
    Группа КТЭИ-03-2

    Реферат

    Материалы, применяемые в машиностроении


    Выполнила Ягудина А.Р.
    Проверил .Береснев Г.А.

    Пермь 2005

    Введение
    На сегодняшний день стали являются основным конструкционным материалом для изготовления нагруженных деталей машин, сооружений, элементов подвижного состава.

    Сталями называют сплавы железа с углеродом и некоторыми другими химическими элементами.

    По химическому составу различают стали углеродистые и легированные.

    Если сталь имеет в своем составе только Fe, C и некоторое количество постоянной примеси, то такую сталь называют углеродистой. Если в углеродистую сталь специально введены один или несколько так называемых легирующих элементов (Cr, Ni, W и др.) с целью улучшения ее служебных и технических свойств, то такую сталь называют легированной.
    Углеродистая сталь
    Углеродистая сталь – наиболее распространенный продукт металлургической промышленности и широко применяется для всевозможных сооружений (железных дорог, мостов, зданий и др.), деталей машин, приспособлений и т.д.

    Углеродистую сталь классифицируют по различным ее признакам. Например, по химическому составу, в зависимости от степени раскисления, по структуре, качеству и назначению.

    В зависимости от степени раскисления стали делят на спокойную, полуспокойную и кипящую.

    Полуспокойную сталь раскисляют в меньшей степени, чем спокойную. По свойствам они занимают промежуточное положение между кипящей и спокойной.

    Спокойная сталь полностью раскислена ферромарганцем, ферросилицием и алюминием (путем их последовательного введения): в изложнице застывает спокойно; имеет более однородный состав. Из нее изготавливают рельсы, колеса, оси, листовые рессоры, пружины, а также другие детали подвижного состава, испытывающие большие нагрузки. Используют также для изготовления металлических пролетов мостов.

    (Ст3сп2 - сталь углеродистая обыкновенного качества, спокойная, категория поставки-2)

    Кипящая сталь раскислена не полностью (только ферромарганцем), поэтому она при заливке в изложницу и при кристаллизации продолжает «кипеть». В результате свободного кипения из нее более полно выходят HMB. Эта сталь отличается повышенной пластичностью, хорошо штампуется, сваривается и поэтому применяется в основном для изготовления деталей методом штамповки из листов с последующей сваркой. Она дешевле спокойной, однако, из-за значительной неоднородности состава ее применение ограничено. Важным преимуществом является отсутствие сосредоточенной усадочной раковины в слитке, поэтому на 10-20% увеличивается выход годного металла.

    По назначению углеродистые стали делятся на конструкционные и инструментальные.

    Конструкционные углеродистые стали используют в машиностроении и строительном деле. В зависимости от величины и характера нагрузки, прикладываемой к изделиям, выполненным из них, они делятся на стали обыкновенного качества и стали качественные.

    В сталях обыкновенного качества допускается большее содержание S, P, HMB, газов и других примесей, чем в сталях качественных. Они выплавляются мартеновским, бессемеровским или томасовским способами и применяется для сортового и листового проката, гвоздей, заклепок, болтов, труб и т.д. Особых требований к составу шихты, процессу плавки и разливки обычно не предъявляется.

    По ГОСТу сталь обыкновенного качества в зависимости от качества разделяется на две группы:

    Группа А – сталь, у которой гарантируются только механические свойства.

    Химический состав не гарантируется. Поэтому стали этой группы можно подвергать только механической обработке; нагревать и сваривать их нельзя. Маркируются они следующим образом: Ст0, Ст1…Ст6. Чем выше номер, тем выше содержание углерода в стали, тем она более твердая и менее пластичная. Номер марки характеризует механические свойства. Из этих сталей изготавливают детали для подвижного состава без термической обработки.

    Группа Б (БСт0,БСт1…БСт6) - выпускаются с гарантируемым химическим составом, поэтому их можно нагревать (например, для ковки), а затем с помощью термообработки исправлять нарушенную структуру и придавать необходимые свойства.

    Группа В (ВСт0,ВСт1…ВСт6) – идущие на изготовление сварных конструкций, различаются по механическим свойствам и химическому составу.

    Качественные углеродистые стали выплавляется в мартеновских и электрических печах и применяется для изготовления более ответственных деталей машин и механизмов. Ее получают при более строгом соблюдении технологии выплавки. Она превосходит сталь обыкновенного качества по однородности, а также содержит меньше вредных примесей (серы и фосфора). Маркировка этой стали производится двумя цифрами, указывающими среднее содержание углерода в сотых долях процента. Из-за высокой хрупкости конструкционные углеродистые стали содержат углерода не более 0.85%.Так, марка 25 содержит углерода в среднем 0.25%. Для маркировки кипящей стали используют буквы кп (например. 08 кп). Буква А, стоящая в конце марки, свидетельствует об улучшенном металлургическом качестве.

    Инструментальные углеродистые стали являются сталями высокоуглеродистыми (содержание углерода 0.7-1.3%), что гарантирует им высокую твердость, необходимую для придания инструменту режущих свойств и износостойкости. Инструментальная сталь выплавляется в мартеновских и электрических печах; применяется для изготовления различных инструментов (режущих, измерительных, ударных и пр.). Инструментальная сталь делится на качественную и высококачественную. Сталь качественная обозначается буквой У и цифрой, указывающей количество углерода в десятых долях процента, например, У7, У8 и далее до У13.

    Сталь высококачественная инструментальная содержит меньше примесей(серы, фосфора), чем качественная; при ее маркировке добавляют букву А, например, У8А. Эти стали используют для изготовления мерительного, режущего и ударно-штампового инструмента. Существенным недостатком углеродистой стали является то, что эта сталь не обладает нужным сочетанием механических свойств. С увеличением содержания углерода увеличиваются прочность и твердость, но одновременно уменьшаются пластичность и вязкость, растет хрупкость.

    Выбор марки стали и термическая обработка определяются назначением и характером эксплуатации инструмента.
    Легированная сталь
    Легированные стали используют для изготовления тяжелонагруженных деталей ответственного назначения, так как они обладают значительно более высокими механическими характеристиками. При легировании у стали можно получать заданные свойства, в том числе отсутствующие у углеродистых сталей (например, коррозионную стойкость, жаропрочность).

    Легированные стали обладают более глубокой прокаливаемостью деталей тех же размеров, чем из углеродистых сталей. Многие их марки прокаливаются насквозь даже при больших сечениях деталей. Чем больше в стали легирующих элементов (до определенной концентрации), тем выше ее прокаливаемость. Большинство легирующих элементов снижают температуру мартенситного превращения и улучшают качество остаточного аустенита в структуре.

    В зависимости от суммарного содержания легирующих элементов стали делятся на низколегированные (содержание легирующих элементов до 2.5%), среднелегированные (от 2.5 до 10%) и высоколегированные (свыше 10%).

    В легированных сталях Fe должно быть не менее 50%, при меньшем количестве Fe получаются сплавы с особыми свойствами. Стали считаются легированными, если они содержат Si более 0.8% и Mn более 1%.

    По назначению легированные стали делятся на конструкционные, инструментальные, стали и сплавы с особыми свойствами.

    В конструкционные легированные стали для улучшения их служебных свойств вводят такие химические элементы, как Cr, Ni, W, Mo, V, B и другие, а также Mn и Si в количествах, превышающих их обычное содержание в углеродистых сталях.

    ГОСТом предусмотрены следующие буквенные обозначения легирующих элементов, входящих в состав сталей: Mn – Г, Si – С, Cr- Х, Ni - Н, Mo - М, W- В, V- Ф, Al - Ю, Ti - Т, B - Р, Cu - Д, Nb - Б. Эти буквы, сочетаясь с цифрами, указывают на состав легированной стали, например: 45Х, 12ХН3А, ХВ5, 9ХС. Цифры, стоящие перед буквами, указывают на содержание углерода в сотых долях процента, - если две цифры и в десятых долях процента, - если одна цифра. Отсутствие впереди букв цифр означает, что сталь содержит углерода 1% и больше. Цифры, стоящие за буквами, указывают на среднее содержание данного легирующего элемента в процентах. Отсутствие за буквой цифры означает, что данного элемента содержится до 1%. Стоящая в конце маркировки буква А свидетельствует о высококачественной стали, с пониженным содержанием S и P (менее0.02% каждого). Например, марка 12Х2Н4А обозначает, что это хромоникелевая высококачественная сталь с содержанием углерода 0.12%, Cr – 2%, Ni – 4%.

    Из 90 стандартных марок конструкционных легированных сталей большинство являются среднеуглеродистыми (0.25-0.45% углерода). Используют их после улучшения свойств путем закалки и отпуска, поэтому называют улучшенными. Наиболее распространенные среди них являются стали: хромистые (30Х, 38Х, 40Х, 45Х, 50Х), марганцевые (30Г, 35Г, 40Г, 45Г, 35Г2, 40Г2), кремнистые (55С2, 60С2), хромоникелевые (30ХН3А, 40ХН, 45ХН), хромокремнистые (33ХС, 38ХС), хромомарганцевые (35ХГ2, 4ХГ), хромомарганцевокремнистые (30ХГС, 30ХГСА, 35ХГСА). Эти стали используются в производстве нагруженных и сильнонагруженных деталей машин.

    Конструкционные легированные стали в сравнении с углеродистыми обладают более высокими вязкостно-прочностными свойствами. Это объясняется тем, что: 1) все они (кроме марганцевых сталей) имеют мелкозернистую структуру; 2) глубже прокаливаются; 3) закаливаются не в воде, а в масле (а некоторые на воздухе), благодаря чему у них образуется очень малые закалочные напряжения, и поэтому они имеют более высокие пластичность и вязкость; 4) при их отпуске требуется более высокая температура и время выдержки, чем для углеродистых сталей, вследствие чего в них полнее снимаются закалочные напряжения и вязкость оказывается выше.

    Инструментальные легированные стали применяют для изготовления мерительного, режущего и ударно-штамповочного инструментов. Эти стали должны быть твердыми и износостойкими, сохранять геометрические размеры в течение длительного времени. Указанные свойства достигаются в результате относительно высокого содержания углерода (0.8-1.0%) и при наличии карбидообразующих элементов, главным образом Cr. Образующаяся у них после закалки и низкого отпуска структура обеспечивает высокие режущие свойства инструмента.

    Наиболее часто для изготовления режущего инструмента используют следующие марки легированной инструментальной стали: Х (для резцов), 9ХС и ХВСГ (для сверл, разверток, метчиков, плашек, фрез). В маркировке этих сталей содержание углерода указывается в десятых долях процента. Отсутствие цифры указывает на содержание углерода в количестве около 1%. Отсутствие цифры после символов таких элементов, как Cr, Si, W, означает, что их содержание может достигать до 1.5%.

    Высоколегированные инструментальные стали, содержащие до 1% углерода и до 25% W, Cr, V, способны сохранять высокую твердость и резать металл при разогреве режущей кромки инструмента до 580-650 ° С. Благодаря этим качеством они обеспечивают высокую скорость резания при точении, сверлении, фрезеровании и называются быстрорежущими сталями. Например, в стали марки Р18 - буквой Р обозначают быстрорежущую сталь.

    Еще более высокой твердостью и режущей способностью обладают твердосплавные пластины, которыми оснащают режущий инструмент. Они превосходят быстрорежущую сталь по скорости резания и теплостойкости, которая достигает 900-1000° С . Пластины получают методом спекания при температуре 1500° С. Изготавливают их из порошков карбидов вольфрама, титана, тантала и кобальта; кобальт используют в качестве пластичной связки.

    Коррозионностойкими ( нержавеющими) называют стали стойкие к действию химической и электрохимической коррозии, т.е. обладающие стойкостью к разрушающему воздействию атмосферных условий, речной и морской воды, растворов солей, кислот и щелочей. Основным легирующим элементом всех марок нержавеющих сталей является Cr. На металлическом изделии при содержании Cr не менее 12% образуется тонкая сплошная плотная пленка окисла хрома Cr2O3, которая и предохраняет сталь от коррозии. Стойкость к коррозии хромистых сталей повышается при введении в их состав Ni. Поэтому различают нержавеющие стали хромистые и хромоникелевые. Например, хромистые стали ОХ13, 12Х13, 40Х13 и хромоникелевые стали Х18Н10, ОХ18Н10, ООХ18Н10. В маркировке «О» указывает, что содержание углерода не должно превышать 0.08%, «ОО» - не более 0.04%. Стали марок Х17, ОХ17Т, Х28 используют для изготовления оборудования предприятий химической и пищевой промышленности. Хромоникелевые стали марок ОХ18Н10 и ОХ18Н9 применяют для изготовления деталей сваркой; они работают в особо агрессивной среде.

    Для защиты металла от коррозии используют также оксидирование и фосфатирование, цинкование, хромирование, кадмирование и др.
    Сплавы

    Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока имеют чистоту около 99,9%. В большин­стве же других случаев люди имеют дело со сплавами. Сплавы - это системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие свойствами, присущи металлическому состоянию. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и тер­мическое поведение сплавов. Все сплавы имеют специальную маркировку, т.к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

    Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют стали раз­личных составов. Простые конструкционные стали состоят из железа относительно высокой чистоты с небольшими (0,07—0,5%) добавками углерода. Так, чугун, получаемый в доменной печи, содержит около 10% других металлов, из них примерно 3% составляет углерод, а остальные — кремний, марганец, сера и фосфор. А легированные стали получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден.

    Никель наряду с хромом является важнейшим компонентом многих сплавов. Он придает сталям высокую химическую стойкость и механическую прочность. Так, известная нержа­веющая сталь содержит в среднем 18% хрома и 8% никеля. Для производства химической аппаратуры, сопел самолетов, космических ракет и спутников требуются сплавы, которые устойчивы при тем­пературах выше 1000 °С, то есть не разрушаются кислородом и горючими газами и обладают при этом прочностью лучших сталей. Этим условиям удовлетворяют сплавы с высоким содержанием никеля. Большую группу составляют медно-никелевые сплавы.

    Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Он имеет красивый внешний вид. Из мельхио­ра изготавливают посуду и укра­шения, чеканят монеты («серебро»). Похожий на мельхиор сплав - нейзильбер -содержит, кроме 15% ни­келя, до 20% цинка. Этот сплав используют для изготовления худо­жественных изделий, медицинского инструмента. Медно-никелевые спла­вы константан (40% никеля) и ман­ганин (сплав меди, никеля и мар­ганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве элект­роизмерительных приборов. Харак­терная особенность всех медно-ни­келевых сплавов - их высокая стой­кость к процессам коррозии - они почти не подвергаются разрушению даже в морской воде. Латуни благодаря своим качествам нашли широкое применение в ма­шиностроении, химической промыш­ленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добав­ляют алюминий, никель, кремний, марганец и другие металлы. Из латуней изготавливают тру­бы для радиаторов автомашин, тру­бопроводы, патронные гильзы, па­мятные медали, а также части технологических аппаратов для полу­чения различных веществ.

    Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30-40 кгс/мм2 у сплавов и 25-29 кгс/мм2 у технически чистой меди.

    Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм2 ниже, чем у стали).

    Основное преимущество медных сплавов - низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.

    Марки обозначаются следующим образом.

    Первые буквы в марке означают: Л - латунь и Бр. - бронза. Буквы, следующие за буквой Л в латуни или Бр. В бронзе, означают: А - алюминий, Б - бериллий, Ж - железо, К - кремний, Мц - марганец, Н - никель, О - олово, С - свинец, Ц - цинк, Ф. - фосфор. Цифры, помещенные после буквы, указывают среднее процентное содержание элементов. Порядок расположения цифр, принятый для латуней, отличается от порядка, принятого для бронз.

    В марках латуни первые две цифры (после буквы) указывают на содержание основного компонента - меди. Остальные цифры, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов.

    Эти цифры расположены в том же порядке, как и буквы, указывающие присутствие в сплаве того или иного элемента. Таким образом, содержание цинка в наименовании марки латуни не указывается и определяется по разности. Например, Л86 означает латунь с 68% Cu (в среднем) и не имеющую других легирующих элементов, кроме цинка; его содержание составляет (по разности) 32%. ЛАЖ 60-1-1 означает латунь с 60% Cu , легированную алюминием (А) в количестве 1% , с железом (Ж) в количестве 3% и марганцем (Мц) в количестве 1%. Содержание цинка (в среднем) определяется вычетом из 100% суммы процентов содержания меди, алюминия, железа и марганца.

    В марках бронзы (как и в сталях) содержание основного компонента - меди - не указывается, а определяется по разности. Цифры после букв, отделяемые друг от друга через тире, указывают среднее содержание легирующих элементов; цифры расположенные в том же порядке, как и буквы, указывающие на легирование бронзы тем или иным компонентом. Например, Бр.ОЦ10-2 означает бронзу с содержанием олова (О)

    4% и цинка (Ц) 3%.Содержание меди определяется по разности (из 100%). Бр.АЖНЮ-4-4 означает бронзу с 10% Al , 4% Fe и 4% Ni (и 82% Cu). Бр. КМц3-1 означает бронзу с 3% Si , и 1% Mn (и 96% Cu).

    1. Медно-цинковые сплавы. Латуни.

    По химическому составу различают латуни простые и сложные, а по структуре - однофазные и двухфазные. Простые латуни легируются одним компонентом: цинком. Однофазные простые латуни имеют высокую пластичность; она наибольшая у латуней с 30-32% цинка (латуни Л70 , Л67). Латуни с более низким содержанием цинка (томпаки и полутомпаки) уступают латуням Л68 и Л70 в пластичности, но превосходят их в электро- и теплопроводности. Они поставляются в прокате и поковках.

    Двухфазные простые латуни имеют хорошие ковкость (но главным образом при нагреве) и повышенные литейные свойства и используются не только в виде проката, но и в отливках. Пластичность их ниже, чем у однофазных латуней, а прочность и износостойкость выше за счет влияния более твердых частиц второй фазы.

    2. Оловянные бронзы.

    Однофазные и двухфазные бронзы превосходят латуни в прочности и сопротивлении коррозии (особенно в морской воде). Однофазные бронзы в катаном состоянии, особенно после значительной холодной пластической деформации, имеют повышенные прочностные и упругие свойства.

    Для двухфазных бронз характерна более высокая износостойкость. Важное преимущество двухфазных оловянистых бронз - высокие литейные свойства; они получают при литье наиболее низкий коэффициент усадки по сравнению с другими металлами, в том числе чугунами. Оловянные бронзы применяют для литых деталей сложной формы. Однако для арматуры котлов и подобных деталей они используются лишь в случае небольших давлений пара. Недостаток отливок из оловянных бронз - их значительная микропористость. Поэтому для работы при повышенных давлениях пара они все больше заменяются алюминиевыми бронзами. Из-за высокой стоимости олова чаще используют бронзы, в которых часть олова заменена цинком (или свинцом).

    3. Алюминиевые бронзы.

    Эти бронзы все более широко заменяют латуни и оловян­ные бронзы. У алюминиевых бронз литейные свойства (жидкотекучесть) ниже, чем у оловянных; коэффициент усадки больше, но они не образуют пористости, что обеспечивает получение более плотных отливок. Литейные свойства улучшаются введением в указанные бронзы небольших количеств фосфора. Кроме того, алюминиевые двухфазные бронзы, имеют более высокие прочностные свойства, чем латуни и оловянные бронзы.

    Алюминиевые бронзы используют в судостроении, авиации, и т.д. В виде лент, листов, проволоки их применяют для упругих элементов, в частности для токоведущих пружин.

    4. Кремнистые бронзы

    Применение кремнистых бронз ограниченное. Используются однофазные бронзы как более пластичные. Они превосходят алюминиевые бронзы и латуни в прочности и стойкости в щелочных (в том числе сточных) средах. Эти бронзы применяют для арматуры и труб, работающих в указанных средах.

    Кремнистые бронзы, дополнительно легированные марганцем, в результате сильной холодной деформации приобретают повышенные прочность и упругость и в виде ленты или проволоки используются для различных упругих элементов.

    5. Бериллиевые бронзы.
    Бериллиевые бронзы сочетают очень высокую прочность и коррозионную стойкость с повышенной электропроводностью. Однако эти бронзы из-за высокой стоимости бериллия используют лишь для особо ответственных в изделиях небольшого сечения в виде лент, проволоки для пружин, мембран, сильфонов и контактах в электрических машинах, аппаратах и приборах.

    Бериллиевые бронзы после закалки и старения, т.к. растворимость бериллия в меди уменьшается с понижением температуры. Выделение при старении частиц химического соединения CuBe повышает прочность и уменьшает концентрацию бериллия в растворе меди.
    По следующим рецептам можно получить легкоплавкие сплавы. Сплав Ньютона: 31 массовая часть свинца, 19 частей олова и 50 частей висмута. Температура плавления 95 °С. Сплав Вуда: 25 частей свинца, 12,5 частей олова, 50 частей висмута и 12,5 частей кадмия. Температура плавления 60 °С. Ложка из такого сплава расплавится, если ею помешать горячий кофе. Раньше это демонстрировали в качестве шутли­вого опыта. Однако перемешанный таким образом напиток ядовит из-за солей свинца и висмута!
    Дуралюмин (Д) - дюралюминий, дюраль, собирательное название группы сплавов на основе алюминия с добавками 3—5% Cu, 0,4—2,4% Mg и 0,3—1% Mn. Д. — первые широко используемые деформируемые алюминиевые сплавы. На закалённом Д. было открыто явление упрочнения при естественном старении. Из Д. методом полунепрерывного литья отливают слитки, которые подвергают обработке давлением (прокатке, прессованию и т.п.) для получения плит, листов, профилей, труб, проволоки для заклёпок, поковок и др. полуфабрикатов. Д. закаливают в воде при температуре около 500°С и затем подвергают естественному старению в течение 4 суток или реже искусственному старению при температуре около 190°С. После такой термической обработки предел прочности Д. разных марок составляет примерно 400—500 Мн/м2 (40—50 кг/мм2). С производством Д. был связан начальный период развития металлического самолётостроения. Наряду с др. алюминиевыми сплавами Д. широко применяют в авиации, наземном транспорте, машиностроении и др. областях техники

    Алюмель (А), сплав, применяемый в пирометрии в качестве отрицательного термоэлектрода термопары хромель-алюмель, а также в виде компенсационных проводов. Химический состав А. (в %): 1,8—2,5 алюминия; 0,85—2,0 кремния; 1,8—2,2 марганца; остальное — никель и кобальт, причём кобальт присутствует как примесь в никеле, и для обеспечения требуемого значения термоэдс его содержание должно быть в пределах 0,6—1,0%. Термопарами с А. пользуются для измерений температуры до 1000°С. Свыше 1000°С при длительных выдержках изменение термоэдс становится весьма заметным. Разработаны и применяются сплавы А., легированные 0,06—0,1% циркония или 0,06% циркония + 0,005—0,03% бора и др. Легирование А. существенно увеличивает пластичность (при 600—1100°С) и длительную прочность (при 700—900°С), а также повышает стабильность термоэдс при температурах до 1250—1300°С.

    Хромель (Х)

    [от {хром} и {(ник)ель}], сплав никеля с хромом, обладающий благоприятным сочетанием термоэлектрических свойств и жаростойкости. Содержит около 10% Cr, около 1% Со, а также примеси (до 0,2% С и до 0,3% Fe). Х. характеризуется достаточно большим и почти прямолинейным изменением {термоэдс} (ТЭДС) в широком интервале температур. ТЭДС термопары хромель - платина при температурах спаев 1000 и 0 ?С - около 33 мв. Х. имеет постоянное значение ТЭДС при длительной работе на воздухе в интервале температур 20-1000 ?С; при более высокой температуре эксплуатационная надёжность сплава снижается. Х. изготовляется в виде проволоки и применяется в паре с {алюмелем} в качестве положительного термоэлектрода термопары хромель - алюмель, которая используется при измерении температуры. Х. применяется также в качестве компенсационных проводов. В РФ выпускают Х. марок НХ9,5 и НХ9.
    Фехраль (Ф)

    [от лат. Fe (Ferrum) = железо, Chr (Chromium) = хром и Al (Aluminium) = алюминий], общее название группы жаростойких сплавов на железной основе, содержащих 8=15% Cr и 3,5=5,5% Al. Ф. сочетает жаростойкость с высоким удельным электрич. сопротивлением (1,15=1,35 мком*м); температура плавления около 1470 °С, плотность около 7,3 г/см3. Ф. уступает по жаростойкости {хромелю}, но дешевле его и обладает более высокой технологической пластичностью при горячей и холодной деформации. Выпускается главным образом в виде проволоки и ленты. Применяется обычно как заменитель {нихрома} для изготовления элементов сопротивлений, работающих с нагревом не выше 900-950 °С. В РФ выпускается Ф. марки XI3Ю4.

    Титановые сплавы(Т.С.), сплавы на основе титана. Лёгкость, высокая прочность в интервале температур от криогенных (-250 °С) до умеренно высоких (300—600 °С) и отличная коррозионная стойкость обеспечивают Т. с. хорошие перспективы применения в качестве конструкционных материалов во многих областях, в частности в авиации и других отраслях транспортного машиностроения.  Т. с. получают путём легирования титана следующими элементами (числа в скобках — максимальная для промышленных сплавов концентрация легирующей добавки в % по массе): Al (8), V (16), Mo (30), Mn (8), Sn (13), Zr (10), Cr (10), Cu (3), Fe (5), W (5), Ni (32), Si (0,5); реже применяется легирование Nb (2) и Та (5). Как микродобавки применяются Pd (0,2) для повышения коррозионной стойкости и В (0,01) для измельчения зерна. Легирующие добавки имеют различную растворимость в a и b-Ti и изменяют температуру a/b-превращения. Алюминий, а также кислород и азот, предпочтительнее растворяющиеся в a-Ti, повышают эту температуру по мере увеличения их концентрации, что ведёт к расширению области существования a-модификации; такие элементы называются a-стабилизаторами. Sn и Zr хорошо растворяются в обеих аллотропических модификациях титана и очень мало влияют на температуру «a/b-превращения; они относятся к так называемым нейтральным упрочнителям. Все остальные добавки к промышленным Т. с. предпочтительнее растворяются в b-Ti, являются b-стабилизаторами и снижают температуру полиморфного превращения титана. Их растворимость в a и b-модификациях титана меняется с температурой, что позволяет упрочнять сплавы, содержащие эти элементы, путём закалки и старения.

      В связи с наличием полиморфизма титана и его способностью образовывать твёрдые растворы и химические соединения со многими элементами диаграммы состояния Т. с. отличаются большим разнообразием. Однако в промышленных Т. с. концентрация легирующих элементов, как правило, не выходит за пределы твёрдых растворов на основе a-Ti и b-Ti и металлидные фазы обычно не наблюдаются.

      В нелегированном титане, а также в сплавах титана с a-стабилизаторами и нейтральными упрочнителями нельзя зафиксировать высокотемпературную b-модификацию путём закалки ввиду наличия мартенситного превращения, в результате которого образуется вторичная a-фаза игольчатой формы. В сплавах же с b-стабилизаторами можно, в зависимости от концентрации, зафиксировать любое количество b-фазы вплоть до 100%. На сплошную b-структуру могут закаливаться двойные сплавы, содержащие не менее 4% Fe, 7% Mn, 7% Cr, 10% Mo, 14% V, 35% Nb, 50% Ta; эти концентрации называются критическими. В закалённых сплавах докритического и критического составов (b-фаза является нестабильной и при последующей низкотемпературной обработке (старении) распадается с образованием дисперсных выделений вторичной a-фазы, что даёт эффект упрочнения. В сплавах закритического состава (например, Ti — 30% Mo) образуется стабильная b-фаза и эффекта упрочнения не наблюдается.

      Общепринято деление промышленных Т. с. на 3 группы по типу структуры. К сплавам на основе a-структуры относятся сплавы с Al, Sn и Zr, а также с небольшим количеством b-стабилизаторов (0,5—2%). Ввиду незначительного количества или даже отсутствия в их структуре b-фазы они практически не упрочняются термической обработкой и поэтому относятся к категории сплавов средней прочности (sb = 700—950 Мн/м2; или 70—95 кгс/мм2). Листовая штамповка этих Т. с. возможна только вгорячую. Достоинства a-сплавов — отличная свариваемость, высокий предел ползучести и отсутствие необходимости в термической обработке, а также отличные литейные свойства, что важно для фасонного литья. Малолегированные a-сплавы, а также относимый к этой группе технический титан, имеющие предел прочности менее 700 Мн/м2 (70 кгс/мм2), поддаются листовой штамповке вхолодную. Двухфазные a + b-сплавы — наиболее многочисленная группа промышленных Т. с. Эти сплавы отличаются более высокой технологической пластичностью, чем a-сплавы, и вместе с тем могут быть термически обработаны до очень высокой прочности (sb = 1500—1800 Мн/м2, или 150—180 кг/мм2); они могут обладать высокой жаропрочностью. К недостаткам двухфазных сплавов следует отнести несколько худшую свариваемость по сравнению со сплавами предыдущей группы, так как в зоне термического влияния возможно появление хрупких участков и образование трещин, для предотвращения чего требуется специальная термическая обработка после сварки. Сплавы на основе b-структуры имеют наиболее высокую технологическую пластичность и хорошо поддаются листовой штамповке вхолодную; после старения приобретают высокую прочность; хорошо свариваются, но сварные соединения нельзя подвергать упрочняющей термической обработке из-за охрупчивания, что ограничивает применение сплавов этого типа. Другим недостатком (b-сплавов является сравнительно невысокая предельная рабочая температура — примерно 300 °С; при более высоких температурах большинство сплавов этого типа становится хрупким.

     . По областям применения и виду полуфабрикатов можно приблизительно подразделить сплавы на следующие группы: свариваемые сплавы преимущественно для листов (ВТ5-1, ОТ4-0, ОТ4-1, ОТ4, ВТ20, ВТ6С, ВТ14, ВТ15); сплавы повышенной прочности для штамповок (ВТ5, ВТ6, ВТ14, ВТ16, ВТ22); жаропрочные сплавы для штамповок (ВТЗ-1, ВТ8, ВТ9, ВТ18). Сплав ВТ6С специально рекомендуется для баллонов высокого давления, все жаропрочные сплавы — для дисков, лопаток и других деталей компрессоров газотрубных двигателей, сплав ВТ22 — для массивных нагруженных штамповок, сплав ВТ16 — для болтов. В случае необходимости (например, при изготовлении штампосварных конструкций) все листовые сплавы могут применяться для изготовления штамповок.

      Механические свойства Т. с. в отожжённом и термически упрочнённом состоянии приведены в табл. 2. Кроме обычной термической обработки, состоящей из закалки и старения, применяются различные режимы отжига, термомеханическая обработка (например, закалка из-под штампа с последующим старением), а также изотермическая деформация (медленная штамповка в штампах, нагретых до температуры деформации). В последнем случае достигаются очень однородные и высокие механические свойства. Титан и его сплавы могут подвергаться ковке, объёмной и листовой штамповке, прокатке, прессованию, волочению; из них можно получать те же полуфабрикаты, что и из др. конструкционных металлов, с учётом повышенной склонности титана к окислению при нагреве. Рекомендуется применять защитные эмалевые покрытия, которые при обработке давлением одновременно являются технологическими смазками. Термическую обработку следует проводить в печах с нейтральной атмосферой или в вакууме. Большинство промышленных Т. с. имеют довольно узкий интервал кристаллизации и поэтому обладают удовлетворительными литейными свойствами. Для получения фасонных отливок предпочтительнее a-сплавы, которые, кроме хороших литейных свойств, позволяют заваривать дефекты. Наиболее употребительный в СССР литейный Т. с. — сплав ВТ5Л. Для деталей повышенной прочности применяются сплавы ВТ6Л, ВТ9Л, ВТ20Л и др. В качестве материала для форм используются специальные керамические и графитовые смеси а также стальные кокили.

      * Первое значение для минимальной толщины, второе — для максимальной.

      В стадии промышленной разработки находятся высоколегированные сплавы Ti — Ni, представляющие собой по составу практически чистое химическое соединение никелид титана. Сплавы такого типа, получившие название «нитинол», обладают способностью при определённых условиях восстанавливать свою первоначальную форму после некоторой пластической деформации («эффект памяти»), что используется, например, в автоматическом реле противопожарных устройств и т. п.

      К недостаткам Т. с. следует отнести низкие антифрикционные свойства; это требует применения покрытий и смазок трущихся поверхностей


    написать администратору сайта