Решение задач. Признаки равенства прямоугольных треугольников
Скачать 41.83 Kb.
|
Учитель: Класс: 7 Дата: ________ Тема модуля: Решение задач. Признаки равенства прямоугольных треугольников. Цели модуля: образовательная закрепление знаний (свойства прямоугольных треугольников), знакомство с некоторыми признаками равенства прямоугольных треугольников. развивающая сформировать умение строить и интерпретировать математическую модель некоторой реальной ситуации. воспитательная прививать учащимся интерес к предмету Оборудование: доска Вид модуля проблемно-предметный 1 мини-модуль (комбинированный) Организационный момент. Проверка домашнего задания. Мотивация и актуализация опорных знаний Составили слово “признак”. Ответить на вопросы: Назвать элементы прямоугольного треугольника. Какими свойствами обладают элементы прямоугольного треугольника? Докажите, что катет прямоугольного треугольника, лежащий против угла в 300 , равен половине гипотенузы. Докажите, что если катет прямоугольного треугольника равен половине гипотенузы, то угол лежащий против этого катета равен 300. Найти x. Ответ выбрать из треугольника. мини-модуль (содержательно-поисковый) IV. Изучение нового материалаИзучая треугольники, мы говорим, что он обладает некоторыми свойствами и признаками. А какие признаки равенства треугольников вам известны? Мы сформулировали и доказали свойства прямоугольных треугольников, а сегодня рассмотрим признаки равенства прямоугольных треугольников, будем решать задачи с их применением. Доказывая равенство треугольников, сколько пар соответственно равных элементов отыскивали? А возможно ли доказать равенство прямоугольных треугольников по двум катетам? Перед вами два прямоугольных треугольника АВС и А1В1С1, у них соответственно равны катеты. Докажите, если это возможно, их равенство. №1. (По двум катетам) №2. (По катету и прилежащему к нему острому углу) №3. (По гипотенузе и острому углу) Задачи. Найти равные треугольники и доказать их равенство. мини-модуль (контрольно-смысловой) V. Закрепление изученного на уроке. Решить следующую задачу. Дано: АВС, А1В1С1, DAB= CBA=900, АD = BD Доказать: CAB= DBA. Дано: АВС – равнобедренный, AD и CE – высота АВС Доказать: AD = CE VI. Информирование учащихся о домашнем задании, инструктаж по его выполнению. VII. Подведение итогов модуля (рефлексия, оценка, самооценка, выводы). Учитель вместе с учениками подводит итоги, выставляет оценки. |