Главная страница

Ось и отрезки оси. Координаты на прямой


Скачать 52.5 Kb.
Название Ось и отрезки оси. Координаты на прямой
Дата02.10.2019
Размер52.5 Kb.
Формат файлаdoc
Имя файлаkletenik_01.doc
ТипДокументы
#88363
страница1 из 5
  1   2   3   4   5

§ 1. Ось и отрезки оси. Координаты на прямой
Прямая, на которой выбрано положительное направление, называется осью. Отрезок оси, ограниченный какими-нибудь точками А и В, называется направленным, если сказано, какая из этих точек считается началом отрезка, какая — концом. Направленный отрезок с началом А и концом В обозна­чается символом АВ. Величиной направленного отрезка оси называется его длина, взятая со знаком плюс, если направление отрезка (т. е. направление от начала к концу) совпадает с положительным направлением оси, и со зна­ком минус, если это направление противоположно положительному напра­влению оси. Величина отрезка АВ обозначается символом АВ, его длина — символом АВ. Если точки А и В совпадают, то определяемый ими отрезок называется нулевым; очевидно, в этом случае АВ = ВА = 0 (направление нулевого отрезка следует считать неопределённым).

Пусть дана произвольная прямая а. Выберем некоторый отрезок в ка­честве единицы измерения длин, назначим на прямой а положительное на­правление (после чего она становится осью) и отметим на этой прямой буквой О какую-нибудь точку. Тем самым на прямой а будет введена си­стема координат.

Координатой любой точки М прямой а (в установленной системе коор­динат) называется число х, равное величине отрезка ОМ:
х=ОМ.

Точка О называется началом координат; её собственная координата равна нулю. В дальнейшем символ М (х) означает, что точка М имеет коорди­нату х.

Если M1(x1) и М2(x2) — две произвольные точки прямой а, то фор­мула

M1M2= x2– x1

выражает величину отрезка формула M1 M2 выражает его длину.
|M1M2 | = | x2– x1|
1. Построить точки:

А(3), B(5), С(1), D(), E(), F() и H().

2. Построить точки, координаты которых удовлетворяют урав­нениям

1) |x| = 2; 2) |x—1| = 3; 3) |1— x|=2; 4) | 2+x| = 2.

3. Охарактеризовать геометрически расположение точек, коор­динаты которых удовлетворяют неравенствам:

1) |x| >2; 2) х — 30; 3) 12— x<0; 4) 2x—30;

5) 3x5>0; 6) 1<x<3; 7) — 2x3; 8) >0;

9) >1; 10) <0; 11) <1;

12) x2 — 8x+150; 13)
  1   2   3   4   5


написать администратору сайта