Главная страница

отс ответы. 1. 3 Разложение сигналов в обобщенный ряд Фурье. Тесты по теме 1 Модели непрерывных каналов связи. Автор Санников Владимир Григорьевич правильные ответы отмечены знаком неправильные ответы отмечены знаком #


Скачать 1.25 Mb.
Название1. 3 Разложение сигналов в обобщенный ряд Фурье. Тесты по теме 1 Модели непрерывных каналов связи. Автор Санников Владимир Григорьевич правильные ответы отмечены знаком неправильные ответы отмечены знаком #
Анкоротс ответы
Дата23.04.2023
Размер1.25 Mb.
Формат файлаpdf
Имя файла3_ots_otvety_na_itogovyy_test.pdf
ТипТесты
#1084064
страница16 из 17
1   ...   9   10   11   12   13   14   15   16   17
h
F
h
F
h
F
h
F










9.2.4. Задан параметр h
0 2
. Вероятность ошибки при оптимальном приеме сигналов
ДФМ равна
(
)
( )
(
)
;
2 1
#
;
2 1
#
;
1
#
;
2 1
*
0 0
0 0
h
F
h
F
h
F
h
F










9.2.5. Задан параметр h
0 2
. Вероятность ошибки при оптимальном приеме сигналов ДЧМ равна
( )
(
)
(
)
;
2 1
#
;
2 1
#
;
2 1
#
;
1
*
0 0
0 0
h
F
h
F
h
F
h
F











9.2.6. Задан параметр h
0 2
=9. Вероятность ошибки при оптимальном приеме сигналов ДАМ равна
( )
(
)
( )
;
6 1
#
;
2 3
1
#
;
3 1
#
;
2 3
1
*
F
F
F
F










9.2.7. Задан параметр h
0 2
=9. Вероятность ошибки при оптимальном приеме сигналов
ДФМ равна
(
)
( )
( )
;
6 1
#
;
2 3
1
#
;
3 1
#
;
2 3
1
*
F
F
F
F










9.2.8. Задан параметр h
0 2
=9. Вероятность ошибки при оптимальном приеме сигналов
ДЧМ равна
( )
(
)
( )
;
6 1
#
;
2 3
1
#
;
2 3
1
#
;
3 1
*
F
F
F
F










9.2.9. Заданная вероятность ошибки при оптимальном приеме сигналов ДФМ достигается, если параметр h
0 2
=25
. Для получения такой же вероятности ошибки при использовании ДАМ параметр h
0 2 должен быть равен
* 100; # 25 ; # 50 ; # 12.5; # 6.25;
9.2.10. Заданная вероятность ошибки при оптимальном приеме сигналов ДФМ достигается, если параметр h
0 2
=15
. Для получения такой же вероятности ошибки при использовании ДЧМ параметр h
0 2 должен быть равен :
* 30; # 15 ; # 60 ; # 7.5; # 3.75;
9.2.11. Заданная вероятность ошибки при оптимальном приеме сигналов ДАМ достигается, если параметр h
0 2
=20
. Для получения такой же вероятности ошибки при использовании ДЧМ параметр h
0 2 должен быть равен
* 10; # 5 ; # 40 ; # 80; # 20;
9.2.12. Введите виды модуляции в порядке возрастания помехоустойчивости
* ДАМ * ДЧМ; * ДФМ;
9.2.13. Введите виды модуляции в порядке возрастания вероятности ошибки при заданном параметре h
0 2
:
* ДФМ; * ДЧМ; * ДАМ
9.2.14. ДФМ при заданной мощности передатчика имеет максимальную :
* энергию разности посылок
# энергию посылки
# энергию бита
# мощность посылки
9.2.15. Средняя мощность передатчика с использованием ДЧМ равна Р. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДЧМ, мощность передатчика при использовании ДАМ равна
* Р # Р ; # Р ; # Р # Р ;
9.2.16. Средняя мощность передатчика с использованием ДФМ равна Р. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДФМ, мощность передатчика при использовании ДАМ равна
* Р # Р ; # Р ; # Р # Р ;
9.2.17. Средняя мощность передатчика с использованием ДЧМ равна 10 вт. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДЧМ, мощность передатчика при использовании ДФМ равна
* 5 ; # 10 ; # 20 ; # 40; # 2.5 ;

9.2.18. Средняя мощность передатчика с использованием ДФМ равна 10 вт. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДЧМ, мощность передатчика при использовании ДАМ равна
* 40 вт; # 10 вт; # 20 вт; # 5 вт; # 2.5 вт;
9.2.19. Средняя мощность передатчика с использованием ДФМ равна 100 вт. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДФМ, мощность передатчика при использовании ДЧМ равна
*200 вт; # 100 вт ; # 50 вт ; # 400 вт; # 25 вт ;
9.2.20. Средняя мощность передатчика с использованием ДАМ равна 16 вт. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДАМ, мощность передатчика при использовании ДЧМ равна
* 8 вт ; # 16 вт ; # 4 вт ; # 32 вт; # 2 вт ;
9.2.21. Соответствие мощностей передатчика видам модуляции при одинаковой помехоустойчивости ДАМ * 4 вт ;
* ДЧМ; * 2 вт ;
*ДФМ ; * 1 вт ;
9.2.22. Задан параметр h
0 2
. Соответствие формул для расчета вероятности ошибки при оптимальном приеме виду модуляции
( )
(
)
;
2 1
*
;
*
;
2 1
*
;
*
;
1
*
;
*
0 0
0
h
F
ДФМ
h
F
ДАМ
h
F
ДЧМ









9.3.1. Некогерентный приемник двоичных сигналов ДАМ содержит следующие основные блоки
* полосовой фильтр, амплитудный детектор, решающее устройство
# полосовой фильтр, частотный детектор, решающее устройство
# полосовой фильтр, амплитудный детектор, ФНЧ;
# модулятор, амплитудный детектор, решающее устройство
9.3.2. Некогерентный приемник двоичных сигналов ДЧМ содержит следующие основные блоки
* полосовой фильтр ПФ, полосовой фильтр ПФ, амплитудный детектор АД, амплитудный детектор АД, решающее устройство
# полосовой фильтр , амплитудный детектор АД, решающее устройство
# полосовой фильтр ПФ, полосовой фильтр ПФ, амплитудный детектор АД, амплитудный детектор АД, ИФНЧ;
# полосовой фильтр ПФ, полосовой фильтр ПФ, ИФНЧ1, ИФНЧ0, решающее устройство
9.3.3. На входе некогерентного частотного детектора действует сигнал с амплитудой 40 мВ и белый шум со спектральной плотностью энергии 4 мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Параметр h
2
равен
* 2 ; # 4 ; # 8 ; # 16 ; # 1 ;
9.3.4. На входе некогерентного детектора действует сигнал с амплитудой мВ и белый шум со спектральной плотностью энергии 8 мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Параметр h
2
равен
* 1 ; # 4 ; # 8 ; # 16 ; # 2 ;

9.3.5. На входе некогерентного детектора действует сигнал с амплитудой мВ и белый шум со спектральной плотностью энергии 1 мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Параметр h
2
равен
* 2 ; # 4 ; # 8 ; # 16 ; # 1 ;
9.3.6. Задан параметр h
2
. Вероятность ошибки при некогерентном приеме сигналов ДАМ равна
* 0.5exp(-0.25h
2
) ; # exp(-0.5h
2
) ; # 0.5exp(0.5h
2
) ;
# 0.5exp(-h
2
) ; # 0.5exp(-0.5h) ;
9.3.7. Задан параметр h
2
. Вероятность ошибки при некогерентном приеме сигналов ДЧМ равна
* 0.5exp(-0.5h
2
) ; # exp(-0.5h
2
) ; # 0.5exp(0.5h
2
) ;
# 0.5exp(-0.25h
2
) ; # 0.5exp(-0.5h) ;
9.3.8. Задан параметр h
2
. Вероятность ошибки при некогерентном приеме сигналов
ДОФМ равна
* 0.5exp(-h
2
) ; # exp(-0.5h
2
) ; # 0.5exp(0.5h
2
) ;
# 0.5exp(-0.25h
2
) ; # 0.5exp(-0.5h) ;
9.3.9. Задан параметр h
2
=4. Вероятность ошибки при некогерентном приеме сигналов ДАМ равна
* 0.5exp(-1) ; # exp(-0.5) ; # 0.5exp(0.5) ;
# 0.5exp(-2) ; # 0.5exp(-4) ;
9.3.10. Задан параметр h
2
=4. Вероятность ошибки при некогерентном приеме сигналов
ДЧМ равна
* 0.5exp(-2) ; # exp(-2) ; # 0.5exp(2) ;
# 0.5exp(-1) ; # 0.5exp(-0.5) ;
9.3.11. Задан параметр h
2
=8. Вероятность ошибки при некогерентном приеме сигналов
ДОФМ равна
* 0.5exp(-8) ; # exp(-0.5) ; # 0.5exp(4) ;
# 0.5exp(-4) ; # 0.5exp(-2) ;
9.3.12. Задан параметр h
2
=0
. Вероятность ошибки при некогерентном приеме сигналов
ДОФМ, ДЧМ, ДАМ равна :
* 0.5 ; # 1 ; # 0.25 ;
# 0.5exp(-1) ; # exp(-0) ;
9.3.13. На входе некогерентного фазового детектора действует сигнал с амплитудой 40 мВ и белый шум со спектральной плотностью энергии 1 мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Параметр h
2
равен
* 8 ; # 2 ; # 4 ; # 16 ; # 1 ;
9.3.14. На входе некогерентного амплитудного детектора действует сигнал с амплитудой
40 мВ и белый шум со спектральной плотностью энергии 2 мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Параметр h
2
равен
* 4 ; # 8 ; # 2 ; # 16 ; # 1 ; Соответствие формулы для определения вероятности ошибки при некогерентном приеме виду модуляции ДАМ * 0.5exp(-0.25h
2
);
* ДЧМ ; * 0.5exp(-0.5h
2
) ;
* ДОФМ ; * 0.5exp(-h
2
) ;
9.3.16. На входе некогерентного амплитудного детектора действует сигнал с амплитудой
40 мВ и белый шум со спектральной плотностью энергии 1мВ
2
/Гц, прошедший через
полосовой фильтр с полосой пропускания 100 Гц. Вероятность ошибки при некогерентном приеме сигнала ДАМ равна
* 0.5exp(-2) ; # exp(-2) ; # 0.5exp(4) ;
# 0.5exp(-4) ; # 0.5exp(2) ;
9.3.17. На входе некогерентного частотного детектора действует сигнал с амплитудой 40 мВ и белый шум со спектральной плотностью энергии 1мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Вероятность ошибки при некогерентном приеме сигнала ДЧМ равна
* 0.5exp(-4) ; # exp(-2) ; # 0.5exp(4) ;
# 0.5exp(-2) ; # 0.5exp(2) ;
9.3.18. На входе некогерентного фазового детектора действует сигнал с амплитудой 40 мВ и белый шум со спектральной плотностью энергии 1мВ
2
/Гц, прошедший через полосовой фильтр с полосой пропускания 100 Гц. Вероятность ошибки при некогерентном приеме сигнала ДОФМ равна
* 0.5exp(-8) ; # exp(-2) ; # 0.5exp(4) ;
# 0.5exp(-4) ; # 0.5exp(2) ;
9.3.19. Виды модуляции в порядке уменьшения вероятности ошибки
* ДАМ ; * ДЧМ ; * ДОФМ ; * ДФМ ;
9.3.20. На входе некогерентного амплитудного детектора действует сигнал и белый шум, прошедший через полосовой фильтр. Огибающая на выходе амплитудного детектора при передаче 0 распределена по закону
* Релея ; # Шеннона ; # Котельникова ; Фурье ; # Райса ;
9.3.21. На входе некогерентного амплитудного детектора действует сигнал и белый шум, прошедший через полосовой фильтр. Огибающая на выходе амплитудного детектора при передаче 1 распределена по закону
* Райса ; # Релея ; # Шеннона ; # Котельникова ; Фурье ;
9.4.1. Сокращенное название вида модуляции ДОФМ означает двоичная относительная фазовая модуляция
# двоичная однополосная фазовая модуляция
# двоичная однополосная фазоимпульсная модуляция
# двоичная относительная фазоимпульсная модуляция
9.4.2. Правило манипуляции при двоичной относительной фазовой модуляции при передаче 1 фаза данной посылки отличается от фазы предыдущей посылки на 180 0
, а при передаче 0 фаза данной посылки
* равна фазе предыдущей посылки
# отличается от фазы предыдущей посылки на 90 0
;
# отличается от фазы предыдущей посылки на -180 0
;
# отличается от фазы предыдущей посылки на -90 0
;
9.4.3. При использовании ДОФМ на передаче дополнительно включается
* блок внесения относительности
# модулятор # детектор # блок снятия относительности
# декодер
9.4.4. Явление обратной работы состоит в том, что у опорного напряжения, необходимого для приема сигнала ФМ, может случайно изменяться
* фазана амплитуда # частота # форма
9.4.5. Соответствие суммы по модулю 2 в колонке слева результату в правой колонке

* 0 ⊕ 0= ; * 0;
* 0 ⊕1= ; * 1 ;
* 1 ⊕ 0= ; * 1 ;
* 1 ⊕ 1=; * 0;
9.4.6. Сигнал ДОФМ будет принят верно, если
* (я и N я посылки будут приняты верно
* (я и N я посылки будут приняты неверно
# (я посылка будет принята верно, а N я неверно
# (я посылка будет принята неверно, а N я верно Сигнал ДОФМ будет принят неверно, если
* (я посылка будет принята верно, а N я неверно
* (я посылка будет принята неверно, а N я верно
# (я и N я посылки будут приняты верно
# (я и N я посылки будут приняты неверно
9.4.8. На входе приемника действует сигнал ДОФМ c амплитудой В и шум с дисперсией 0.1 В. Отношение мощности сигнала к мощности шума равно
* 5; # 10;
# 0.1; # 2; # 0.2;
9.4.9. На входе приемника действует сигнал ДФМ c амплитудой U
m
=1000 мВ и шум с дисперсией 0.2 В. Отношение мощности сигнала к мощности шума равно
* 2.5; # 5 000 000; # 5; # 5000;
9.4.10. Сигнал и белый шум со спектральной плотностью G
0
=0.001 В
2
/Гц проходят череэ полосовой фильтр с полосой пропускания Гц. Амплитуда сигнала на выходе ПФ равна 2 В. Отношение с/ш :
* 20; # 40; # 10; # 2000;
9.4.11. Сигнал и белый шум со спектральной плотностью G
0
=0.01 В
2
/Гц проходят череэ полосовой фильтр с полосой пропускания Гц. Амплитуда сигнала на выходе ПФ равна 4 В. Отношение с/ш равно
* 8; # 16; # 4; # 400;
9.4.12. Сигнал и белый шум спектральной плотностью G
0
=0.1 В
2
/Гц проходят череэ полосовой фильтр с полосой пропускания F=100 Гц. Амплитуда сигнала на выходе ПФ равна 6 В. Отношение с/ш равно.
* 1.8; # 3.6; # 0.6; # 60;
9.4.13. Сигнал и белый шум со спектральной плотностью 1 В
2
/Гц проходят через полосовой фильтр с полосой пропускания F=10 Гц. Амплитуда сигнала на выходе ПФ равна 3 В. Отношение с/ш равно
* 0.45 ; # 0.9; # 0.3; # 4.5;
9.4.14. Параметр h
2
=12. Вероятность ошибки при приеме сигнала ДОФМ сравнением фаз равна
* 0.5*ехр(-12) ; # 0.5*ехр(-6) ;
# 0.5; # 0.5*ехр(-3) ; # 0;
9.4.15. ДОФМ – это двоичная __________ фазовая модуляция.
* относительная # обратная # однополосная # одномодовая
9.4.16. Правило манипуляции при ДОФМ: при передаче 1 фаза данной посылки отличается от фазы предыдущей посылки на :

* 180 0
; # 90 0
; # 270 0
; # 360 0
;
9.4.17. Явление обратной работы состоит в том, что у опорного напряжения, необходимого для приема сигнала ФМ, случайно изменяется фазана. Соответствие утверждения справа ситуации указанной слева
* (я и N я посылки приняты верно * сигнал ДОФМ принят верно
* (я и N я посылки приняты неверно * сигнал ДОФМ принят верно
* (я посылка принята верно, а N я неверно * сигнал ДОФМ принят неверно
* (я посылка принята неверно, а N я верно * сигнал ДОФМ принят неверно
9.4.19. Параметр h
2
=2. Вероятность ошибки при приеме сигнала ДОФМ сравнением фаз равна
* 0.5*ехр(-2) ; # 0.5*ехр(-4) ;
# 0.5; # 0.5*ехр(-1) ; # 0;
9.4.20. Выполняется суммирование по модулю два * 0 ⊕ 0= ; * 0 ⊕1= ;
* 1 ⊕ 0= ; * 1 ⊕ 1= . Порядок следования ответов
* 0 ; *1 ; * 1 ; * 0 ;
9.4.21. Параметр h
2
=4. Вероятность ошибки при приеме сигнала ДОФМ сравнением фаз равна
* 0.5*ехр(-4) ; # 0.5*ехр(-2) ;
# 0.5; # 0.5*ехр(-1) ; # 0;
9.4.22. Параметр h
2
=8. Вероятность ошибки при приеме сигнала ДОФМ сравнением фаз равна
* 0.5*ехр(-8) ; # 0.5*ехр(-2) ;
# 0.5; # 0.5*ехр(-4) ; # 0;
9.4.23. Прием сигнала ДОФМ осуществляется следующими способами
* прием сравнением фаз * прием сравнением полярностей ;
# прием сравнением частот # прием сравнением амплитуд
9.5.1. Оптимальный приемник двоичных сигналов на согласованных фильтрах, в общем случае, содержит _____ согласованных фильтра.
*2 ; # 1 ; # 0; # 3;
9.5.2. Оптимальный приемник двоичных сигналов ДАМ на согласованных фильтрах содержит фильтр, согласованный с сигналом
* u
1
(t)=U
m cosw
0
t ; # u
0
(t)=0 ; # u
1
(t)=1; # u
1
(t)=0;
9.5.3. Оптимальный приемник двоичных сигналов ДЧМ на согласованных фильтрах содержит два фильтра, согласованные соответственно с
* u
1
(t)=U
m cosw
1
t; u
0
(t)=U
m cosw
0
t; # u
1
(t)=U
m cosw
0
t; u
0
(t)=0; # u
1
(t)=U
m cosw
0
t; u
0
(t)=-U
m cosw
0
t;
9.5.4. Оптимальный приемник двоичных сигналов ДФМ на согласованных фильтрах содержит фильтр, согласованный с
* u
1
(t)=U
m cosw
0
t; # u
0
(t)=0; # u
1
(t)=1; # u
1
(t)=0;
9.5.5. Оптимальный приемник двоичных сигналов на согласованных фильтрах обеспечивает
* максимальную помехоустойчивость
* минимальную вероятность ошибки
# минимальную помехоустойчивость
# максимальную вероятность ошибки

9.5.6. Амплитуда сигнала ДАМ на входе оптимального приемника равна U
m
=1 мВ , а спектральная плотность белого шума равна 10
-10
В
2
/Гц. Скорость работы 1000 бод. Параметр h
0 2
равен :
* 5 ; # 10 ; # 5000 ; # 10000 ;
9.5.7. Амплитуда сигнала ДАМ на входе оптимального приемника равна U
m
=2 мВ , а спектральная плотность белого шума равна 10
-10
В
2
/Гц. Скорость работы 1000 бод. Параметр h
0 2
равен :
* 20 ; # 40 ; # 20 000 ; # 1 ;
9.5.8. Амплитуда сигнала ДАМ на входе оптимального приемника равна U
m
=2 мВ , а спектральная плотность белого шума равна 10
-9
В
2
/Гц. Скорость работы 1000 бод. Параметр h
0 2
равен :
* 2 ; # 4 ; # 2 000 ; # 1 ;
9.5.9. Амплитуда сигнала ДАМ на входе оптимального приемника равна U
m
=2 мВ , а спектральная плотность белого шума равна 10
-8
В
2
/Гц. Скорость работы 1000 бод. Параметр h
0 2
равен :
* 0.2 ; # 0.4 ; # 200 ; # 1 ;
9.5.10. Амплитуда сигнала ДАМ на входе оптимального приемника равна U
m
=4 В , а спектральная плотность белого шума равна 10
-3
В
2
/Гц. Скорость работы 1000 бод. Вероятность ошибочного приема сигнала ДАМ равна
( )
(
)
;
2 4
1
#
;
2 8
1
#
;
2 8
1
#
;
2 1
*
















F
F
F
F
9.5.11. На входе оптимального приемника сигналов ДАМ на согласованном фильтре отношение энергии посылки к спектральной плотности энергии белого шума равно h
0 2
=8. Вероятность ошибки равна
* 1-F(2); # 1-F(1); # 1-F(4); # 1-F(8);
9.5.12. На входе оптимального приемника сигналов ДЧМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно h
0 2
=4. Вероятность ошибки равна
* 1-F(2); # 1-F(1); # 1-F(4); # 1-F(8);
9.5.13. На входе оптимального приемника сигналов ДФМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно h
0 2
=8. Вероятность ошибки равна
* 1-F(4); # 1-F(1); # 1-F(2); # 1-F(8);
9.5.14. Вероятность ошибки для оптимального приемника сигналов ДАМ на согласованном фильтре равна р ош
= 1-F(3). Отношение энергии посылки к спектральной плотности энергии белого шума на входе приемника равно
* 18; # 9; # 3; # 4.5;
9.5.15. Вероятность ошибки для оптимального приемника сигналов ДЧМ на согласованных фильтрах равна р ош
= 1-F(3). Отношение энергии посылки к спектральной плотности энергии белого шума на входе приемника равно
* 9; ; # 18; # 3; # 4.5;
9.5.16. Вероятность ошибки для оптимального приемника сигналов ДФМ на согласованных фильтрах равна р ош
= 1-F(3).
Отношение энергии посылки к спектральной плотности энергии белого шума на входе приемника равно :
* 4.5; # 18; # 3; # 9;
9.5.17. На входе оптимального приемника сигналов ДФМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно h
0 2
=2.
Для получения той же вероятности ошибки при использовании ДЧМ потребуется h
0 2 равное :
* 4 ; # 2; # 8; # 1;
9.5.18. На входе оптимального приемника сигналов ДАМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно h
0 2
=10. Для получения той же вероятности ошибки при использовании ДЧМ потребуется h
0 2 равное :
* 5 ; # 20; # 2.5; # 10;
9.5.19. На входе оптимального приемника сигналов ДАМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно h
0 2
=16. Для получения той же вероятности ошибки при использовании ДФМ потребуется h
0 2 равное
*4 ; # 8; # 32; # 64;
9.5.20. На входе оптимальных приемников сигналов ДФМ и ДЧМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно, соответственно, 11 и
22. Вероятность ошибок
* в обоих случаях одинакова ;
# в первом случае больше
# во втором случае больше
9.5.21. На входе оптимальных приемников сигналов ДФМ и ДАМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно, соответственно, 5 и
20. Вероятность ошибок
* в обоих случаях одинакова ;
# в первом случае больше
# во втором случае больше
9.5.22. На входе оптимальных приемников сигналов ДАМ и ДЧМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума равно, соответственно, 6 и
3. Вероятность ошибок
* в обоих случаях одинакова ;
# в первом случае больше
# во втором случае больше
9.5.23. На входе оптимальных приемников сигналов ДФМ, ДЧМ, ДАМ на согласованных фильтрах отношения энергии посылки к спектральной плотности энергии белого шума равны, соответственно : 1, 2, 4. Вероятность ошибки
* одинакова ; # больше для ДФМ;
# больше для ДЧМ; # больше для ДАМ
9.5.24. На входе оптимальных приемников сигналов ДАМ, ДЧМ, ДФМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума одинаково. В порядке убывания помехоустойчивости виды модуляции располагаются следующим образом
* ДФМ, ДЧМ, ДАМ # ДАМ, ДЧМ, ДФМ;
# ДАМ, ДФМ, ДЧМ; # ДФМ, ДАМ, ДЧМ;
9.5.25. Соответствие характеристик сигнала параметрам согласованного фильтра
*АЧХ согласованного фильтра * амплитудный спектр сигнала ; Импульсная реакция фильтра * зеркальное отображение сигнала
*ФЧХ согласованного фильтра * ФЧХ сигнала с обратным знаком
10.1.1. Источник выдает 4 равновероятных сообщения. Вероятность каждого сообщения равна
* 0.25; # 1; # 0.5.; # 0;
10.1.2. Источник выдает 5 равновероятных сообщения. Вероятность каждого сообщения равна

* 0.2; # 1; # 0.5.; # 0;
10.1.3. Информация, содержащаяся в процессе X(t) относительно процесса Y(t) , является
* взаимной # согласованной # собственной # условной
10.1.4. Информация, содержащаяся в процессе X(t) и относящаяся к нему самому, является
* собственной # согласованной # относительной # условной
10.1.5. Информация, которую содержит любой процесс в системе связи, относится ____
* к передаваемому сообщению # к сигналу на передаче # к принятому сообщению # к получателю сообщений
10.1.6. Источник выдает 4 равновероятных сообщения. Энтропия источника равна
* 2 бит/сообщение; # 1 бит/сообщение; # 0.5 бит/сообщение; # 4 бит/сообщение ;
10.1.7. С увеличением энтропии источника сообщений количество информации, вырабатываемое источником в единицу времени
* увеличивается # не меняется # уменьшается
10.1.8. Дискретный источник вырабатывает М независимых, равновероятных сообщений. Энтропия этого источника равна
* log(M); # M; # exp(M); # 0.5M
10.1.9. Единица измерения количества информации
* бит # Гц # рад # символ
10.1.10. Источник выдает 3 равновероятных сообщения. Энтропия источника равна
* log 3 бит/сообщение; # 1 бит/сообщение; # 3 бит/сообщение; # 2 бит/сообщение ;
10.1.11. Троичный источник выдает сообщения. Даны вероятности р =0.25 ; р =0.5 . Энтропия источника равна
* 1.5 бит/сообщение; # 1 бит/сообщение; # 3 бит/сообщение; # log 3 бит/сообщение;
10.1.12. Мера средней неопределенности появления реализации случайного сообщения
* энтропия # энергия # дисперсия # математическое ожидание
10.1.13. Энтропия детерминированного сообщения А
* 0; # 1; # logA; # AlogA;
10.1.14. Энтропия двоичного источника сообщений с равновероятными исходами
* 1; # 1/2; # 0; # 2;
10.1.15. Энтропия дискретного источника с независимыми исходами максимальна для ___________ сообщений
* равновероятных # одинаковых # эквивалентных # равнозначных
10.1.16. Энтропия совместного наступления сообщений Аи А распадается на сумму их энтропий, если эти сообщения
* независимы # одинаковы # произвольны # равнозначны

10.1.17. В различных сечениях системы электросвязи наблюдаются множества сообщений (A), переданных сигналов (S), принятых сигналов (S*), принятых сообщений
(A*). Основное неравенство для количества взаимной информации I(X, Y) в выделенных сечениях
* I(A, A)>I(A, S)>I(A, S*)>I(A, A*); # I(A, A)>I(A, S)<I(A, S*)<I(A, A*);
# I(A, A)>I(A, S)=I(A, S*)=I(A, A*); # I(A, A)<I(A, S)<I(A, S*)<I(A, A*);
10.1.18. Двоичный источник выдает сообщения. Задана вероятность р =0.5 . Энтропия источника равна
* 1 бит/сообщение; # 2 бит/сообщение; # 0.5 бит/сообщение; # 0 бит/сообщение;
10.1.19. Четверичный источник выдает сообщения. Заданы вероятности р =0.5; р р =0.25; . Энтропия источника равна
* 1.75 бит/сообщение; # 2 бит/сообщение; # 1 бит/сообщение; # 1.375 бит/сообщение;
10.1.20. Четверичный источник выдает сообщения. Заданы вероятности р =0.5; р р =0.125; . Энтропия источника равна
* 1.75 бит/сообщение; # 2 бит/сообщение; # 1 бит/сообщение; # 1.375 бит/сообщение;
10.1.21. Дискретный стационарный источник вырабатывает М неравновероятных независимых сообщений. Энтропия данного источника
*

=

M
i
i
i
p
p
1
log
; #
M
log
; #
M
p
M
i
i
/
log
1

=
; #
M
p
M
i
i
/
1

=
10.1.22. Непрерывная случайная величина имеет плотность вероятностей W(x). Дифференциальная энтропия равна
*


dx
x
W
x
W
)
(
log
)
(
; #

dx
x
W
)
(
log
; #
)
)
(
log(
dx
x
W

; #
)
(
log
x
W
10.1.23. Дифференциальная энтропия гауссовской случайной величины с дисперсией D равна
*0.5log(2πeD); #
D
log
; # D; #
D
π
2 10.1.24. Дифференциальная энтропия равномерно распределенной в диапазоне [a, b] случайной величины равна
*
)
log(
a
b
; # 1/(b-a); # 0.5(a+b); # (b-a)
10.1.25. Четверичный источник выдает сообщения. Заданы вероятности р =0.25; р р =0.125; . Энтропия источника равна
* 1.75 бит/сообщение; # 2 бит/сообщение; # 1 бит/сообщение; # 1.375 бит/сообщение;
10.2.1. При статистическом кодировании более вероятные сообщения представляются
____ кодовыми словами
* более короткими # более длинными # равными # произвольными

10.2.2. При эффективном кодировании менее вероятные сообщения представляются ____ кодовыми словами
* более длинными # более короткими # равноправными # произвольными
10.2.3. Избыточность кодовой последовательности оптимального эффективного кода
* 0; # < 0; # > 0; # < 1;
10.2.4. Способы увеличения энтропии
* укрупнение сообщений формирование префиксного кода увеличение m;
* предсказание ; формирование префиксного кода увеличение m;
# укрупнение сообщений предсказание увеличение n;
# предсказание ; формирование префиксного кода увеличение n;
10.2.5. Источник выдает 4 сообщения с вероятностями р(А1)=0.14 , р(А2)=0.21 , р(А3)=0.09 , р(А4)=0.56. Кодовые комбинации префиксного кода равны
* 1,00,011,010; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.6. Источник выдает 4 сообщения с вероятностями р(А1)=0.15 , р(А2)=0.23 , р(А3)=0.1 , р(А4)=0.52. Кодовые комбинации префиксного кода равны
* 1,00,011,010; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.7. Источник выдает 4 сообщения с вероятностями р(А1)=0.12 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.52. Кодовые комбинации префиксного кода равны
* 1,01,001,000; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.8. С уменьшением корреляции между сообщениями избыточность источника
* уменьшается # увеличивается # не меняется # растет
10.2.9. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.22 , р(А3)=0.1 , р(А4)=0.55. Кодовые комбинации префиксного кода равны
* 1,00,011,010; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.10. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.51. Кодовые комбинации префиксного кода равны
* 1,01,001,000; # 0,00,011,010; #1,00,011,110; # 1,00,111,010;
10.2.11. Источник выдает 4 сообщения с вероятностями р(А1)=0.14 , р(А2)=0.21 , р(А3)=0.09 , р(А4)=0.56. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Средняя длина комбинации равна

* 1.67; # 1.58; # 2.1; # 1.87;
10.2.12. Источник выдает 4 сообщения с вероятностями р(А1)=0.14 , р(А2)=0.21 , р(А3)=0.09 , р(А4)=0.56. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Вероятность появления 1 и 0 :
* 0.557; 0.443; # 0.55; 0.45; # 0.511; 0.489; # 0.254; 0.746;
10.2.13. Источник выдает 4 сообщения с вероятностями р(А1)=0.15 , р(А2)=0.23 , р(А3)=0.1 , р(А4)=0.52. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Средняя длина комбинации равна
* 1.73; # 1.67; # 2.01 # 1.55;
10.2.14. Источник выдает 4 сообщения с вероятностями р(А1)=0.15 , р(А2)=0.23 , р(А3)=0.1 , р(А4)=0.52. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010. Вероятность появления 1 и 0 :
* 0.532; 0.468; # 0.550; 0.450; # 0.511; 0.489; # 0.254; 0.746;
10.2.15. Источник выдает 4 сообщения с вероятностями р(А1)=0.12 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.52. Соответствующие вероятностям комбинации префиксного кода равны 1,01,001,000. Средняя длина комбинации равна
* 1.7; # 1.67; # 1.73 # 1.55;
10.2.16. Источник выдает 4 сообщения с вероятностями р(А1)=0.12 , р(А2)=0.26 , р(А3)=0.1 , р(А4)=0.52.
Соответствующие вероятностям комбинации префиксного кода равны 1,01,001,000. Вероятность появления 1 и 0 :
* 0.529; 0.471; # 0.532; 0.468; # 0.511; 0.489; #0.550; 0.450;
10.2.17. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.22 , р(А3)=0.1 , р(А4)=0.55. Соответствующие вероятностям комбинации префиксного кода равны 1,00,011,010; Средняя длина комбинации равна
* 1.68; # 1.67; # 1.73 # 1.7;
10.2.18. Источник выдает 4 сообщения с вероятностями р(А1)=0.13 , р(А2)=0.22 , р(А3)=0.1 , р(А4)=0.55. Соответствующие вероятностям комбинации префиксного кода равны 1, 00, 011, 010; Вероятность появления 1 и 0 :
* 0.542; 0.458; # 0.529; 0.471; # 0.511; 0.489; #0.550; 0.450;
10.2.19. У дешифруемых префиксных кодов ни одно кодовое слово не является ____ для другого кодового слова
* началом # частью # основанием # концом
10.2.20. Три основных метода увеличения энтропии в кодере источника
* укрупнение алфавита * равновероятное распределение символов * увеличение основания кода.

10.3.1. Пропускная способность канала с шумом - это максимальная скорость передачи информации при ______________ вероятности ошибки.
* сколь угодно малой
# сколь угодно большой
# средней
# нулевой
10.3.2. При кодировании в канале с шумом для уменьшения ошибок декодирования расстояние между кодовыми словами следует
* увеличить # уменьшить # зафиксировать # выбрать случайно.
10.3.3. Пропускная способность канала с шумом - это
* максимальная скорость передачи информации
# минимальная скорость передачи информации
# средняя скорость передачи информации
# максимальная энтропия источника
10.3.4. Взаимная информация определяется через ____________ безусловной и условной энтропий.
* разность # сумму # произведение # деление.
10.3.5. Повышение помехоустойчивости кодирования в канале с шумом достигается введением дополнительной ________ .
* избыточности # неопределенности # равнозначности # производительности.
10.3.6. Заданы производительность Н
*
=Н/Т источника и пропускная способность С канала. При НС существует такой код, для которого сообщения источника могут быть переданы по каналу с ________ вероятностью ошибок.
* произвольно малой # нулевой # сколь угодно большой
10.3.7. По каналу связи с полосой пропускания F и отношением Р
с
/ Р
ш можно передавать информацию при р ош
→0 со скоростью сколь угодно близкой к :
* С+ Р
с
/ Р
ш
); # С Р
с
/ Р
ш
); # С+ Р
с
/ Р
ш
);; # С+ Р
с
/ Р
ш
);.
10.3.8. . Пропускная способность канала связи с полосой пропускания F=1 кГц и отношением Р
с
/ Р
ш
=7 равна
* 3000 бит/с; # 1000 бит/с ; # 8000 бит/с ; # 7000 бит/с ;
10.3.9. Пропускная способность канала связи с полосой пропускания F=1 кГц и отношением Р
с
/ Р
ш
=15 равна
* 4000 бит/с; # 1000 бит/с ; # 15000 бит/с ; # 16000 бит/с ;
10.3.10. Пропускная способность канала связи с полосой пропускания F=2 кГц и отношением Р
с
/ Р
ш
=3 равна

* 4000 бит/с; # 1000 бит/с ; # 2000 бит/с ; # 6000 бит/с ;
10.3.11. Пропускная способность канала связи с полосой пропускания F=2 кГц и отношением Р
с
/ Р
ш
=31 равна
* 10000 бит/с; # 31000 бит/с ; # 32000 бит/с ; # 62000 бит/с ;
10.3.12. Пропускная способность канала связи с полосой пропускания F=3 кГц и отношением Р
с
/ Р
ш
=7 равна
* 9000 бит/с; # 3000 бит/с ; # 21000 бит/с ; # 24000 бит/с ;
10.3.13. Количество взаимной информации, передаваемой по каналу связи равно нулю, если сигналы на входе и выходе канала связи _______ .
* независимы # неоднозначны # неинформативны; # зависимы
10.3.14. Фамилия ученого, который впервые ввел меру взаимной информации и сформулировал основную теорему для каналов с шумами
* Шеннон; # Котельников; # Винер; # Хинчин;
10.3.15. Заданы производительность Н
*
=Н/Т источника и пропускная способность С канала. При НС существует такой код, для которого сообщения источника могут быть переданы по каналу с ________ вероятностью ошибок.
* произвольно малой # нулевой # сколь угодно большой
11.1.1. Помехоустойчивое кодирование используется для того, чтобы
* повысить помехоустойчивость системы связи
* исправлять ошибки
# уменьшить помехоустойчивость системы связи
# увеличить вероятность ошибки
11.1.2. Запрещенные кодовые комбинации – это комбинации
* неиспользуемые для передачи информации
# используемые для передачи информации
# содержащие одни 0;
# содержащие одни 1;
11.1.3. Разрешенные кодовые комбинации – это комбинации
* используемые для передачи информации
# неиспользуемые для передачи информации
# содержащие одни 0;
# содержащие одни 1;
11.1.4. Кодовое расстояние - это количество позиций, в которых
* одна кодовая комбинация отличается от другой
# совпадают кодовые комбинации
# содержится 1;
# содержится 0;
11.1.5. Основание кода - это :
* количество различных символов, образующих кодовые комбинации # количество единиц в комбинации ;
# количество нулей в комбинации
# количество символов в комбинации
11.1.6. Длина кодовой комбинации – это :
* общее количество символов в кодовой комбинации ;
# количество единиц в комбинации ;

# количество нулей в комбинации
# количество различных символов, образующих кодовые комбинации
11.1.7. Общее количество комбинаций при основании кода m и длине комбинации n равно
* m n
; # mn ;
# n m
; # m/n ;
11.1.8. Код содержит комбинации вида 000, 101, 111, 001, и т.д. Основание кода и длина кодовой комбинации равны, соответственно
* 2, 3; # 3,2 ; # 3,3; # 2,2;
11.1.9. Основание кода и длина кодовой комбинации равны 2. Комбинации кода ( в порядке возрастания десятичного эквивалента двоичных чисел
* 00; 01; 10; 11; # 00; 10; 01;11; # 00; 01; 11; 10; # 01; 00;10; 11;
11.1.10. Соответствие основания кода и длины комбинации (справа) кодовым комбинациям (слева
* -10, 01, 11, -1-1, …..; * 3, 2;
* 001, 110, 010, 111, …..; * 2,3;
* 1, 0, -1, -2 ; *4, 1;
# 1,4;
# 2,2;
11.1.11. Код содержит комбинации вида 000, -101, -1-11, 001, 0-10 и т.д. Основание кода и длина кодовой комбинации равны, соответственно
* 3, 3; # 3,2; # 2, 3; # 2,2;
11.1.12. Код содержит комбинации вида 0000, 0101, 1111, 0001, и т.д. Общее число комбинаций равно
*16 ; # 8; # 9; # 12;
11.1.13. Код содержит комбинации вида 000, 101, 111, 001, и т.д. Общее число комбинаций равно
* 8; # 9; # 4; # 16;
11.1.14. Соответствие общего числа комбинаций кода (справа) основанию кода и длине кодовой комбинации (слева
* 2, 2; * 4;
* 3, 4; * 81;
* 4, 2; * 16;
* 2, 5; *32;
# 64 ;
# 25 ;
11.1.15. Кодовое расстояние между кодовыми комбинациями 101 и 011 равно
* 2; # 4; # 3; # 1;
11.1.16. Кодовое расстояние между кодовыми комбинациями 1101 и 0110 равно :
* 3; # 4; # 2; # 1;
11.1.17. Соответствие кодового расстояния (справа) кодовым комбинациям (слева
* 0011 и 0101; * 2;
* 100101 и 010100; * 3;
* 0011 и 1100; * 4;
* 001001 и 001001; * 0;
# 1;
# 5;
11.1.18. Определяется кодовое расстояние между комбинацией 101010 и кодовыми комбинациями 000000, 111111, 010101 , 000111. Порядок следования кодовых расстояний
* 3; * 3; * 6; * 4;

11.1.19. Разрешенные кодовые комбинации 000, 011, 101, 110. Минимальное кодовое расстояние этого кода равно
* 2; # 3; # 0; # 1;
11.1.20. Разрешенные кодовые комбинации 111, 011, 101, 000. Минимальное кодовое расстояние этого кода равно
* 1; # 3; # 2; # 0;
11.2.1. Для блочного двоичного кода (5,3) количество информационных символов равно
* 3 ; # 2; # 5; # 8;
11.2.2. Для блочного двоичного кода (5,3) количество проверочных символов равно
* 2 ; # 3; # 5; # 8;
11.2.3. Передаются последовательно десятичные числа от 0 до 7. Порядок следования двоичных эквивалентов этих чисел
* 000 ; * 001 ; * 010 ; * 011 ; *100 ; * 101 ; * 110 ; * 111 ;
11.2.4. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4

1
⊕а
2
; а
5

1
⊕а
2
⊕а
3
. Информационная кодовая комбинация 111. Символы аи а
5
равны, соответственно
* 0, 1 ; # 1, 0; # 1, 1; # 0, 0;
11.2.5. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4

1
⊕а
3
; а
5

1
⊕а
2
. Информационная кодовая комбинация 101. Символы аи а равны, соответственно
* 0 ; 1 ; # 1, 0; # 1, 1; # 0, 0;
11.2.6. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4

1
⊕а
2
; а
5

1
⊕а
2
⊕а
3
. Соответствие проверочных символов (справа) информационной комбинации (слева
* 000 ; * 00;
* 010 ; * 11;
* 101 ; * 10;
# 01;
11.2.7. Проверочные символы корректирующего кода (5,3) образуются по правилу а
4

1
⊕а
3
; а
5

1
⊕а
2
⊕а
3
. Разрешенными кодовыми комбинациями этого кода являются комбинации
* 00000 ; * 11010 ; * 01110 ; # 01011 ; # 01111;
11.2.8. Проверочный символ корректирующего кода (3,2) образуются по правилу а
3

1
⊕а
2
. Разрешенные кодовые комбинации этого кода
* 000 ; * 011; * 101; # 001; # 111;
11.2.9. Блочный двоичный код (7,4) имеет минимальное кодовое расстояние равное 3. Этот код
* исправляет все одиночные ошибки
# исправляет все двойные ошибки
# обнаруживает одиночные ошибки
# исправляет три ошибки
11.2.10. Блочный двоичный код (5,3) имеет минимальное кодовое расстояние равное 2. Этот код
* обнаруживает одиночные ошибки
# исправляет двойные ошибки
# исправляет одиночные ошибки
# исправляет две ошибки
11.2.11. Синдром - это :
* указатель позиции, в которой произошла ошибка

# проверочные символы ;
# информационные символы
# неверно принятые символы
11.2.12. Синдром кода : не зависит от переданной комбинации зависит от переданной комбинации не зависит от позиции в которой произошла ошибка
# зависит от номера переданной комбинации
11.2.13. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с
2

2
⊕а
3
⊕а
5
, с
3

1
⊕а
3
⊕а
6
, с
4

1
⊕а
2
⊕а
7
. Принята комбинация 1111001. Синдром равен
* 0001 ; # 1000; # 1001; # 1100; # 1010;
11.2.14. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с
2

2
⊕а
3
⊕а
5
, с
3

1
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 1111010. Синдром равен
* 0010 ; # 1000; # 1001; # 1100; # 1010;
11.2.15. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с
2

2
⊕а
3
⊕а
5
, с
3

1
⊕а
3
⊕а
6
, с
4

1
⊕а
2
⊕а
7
. Принята комбинация 1000000. Синдром равен
* 1011 ; # 1000; # 1001; # 1100; # 1010;
11.2.16. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с
2

2
⊕а
3
⊕а
5
, с
3

1
⊕а
3
⊕а
6
, с
4

1
⊕а
2
⊕а
7
. Принята комбинация 0100000. Синдром равен
* 1101 ; # 1000; # 1001; # 1100; # 1010;
11.2.17. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 1111000. Синдром равен
* 0000 ; # 1000; # 0001; # 0100; # 1010;
11.2.18. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 1111010. Была передана комбинация
* 1111000 ; # 1111010 ; # 1110010 ; # 1101010 ;
11.2.19. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
. Принята комбинация 0000100. Была передана комбинация
* 0000000 ; # 0000100 ; # 0000010 ; # 0000001 ;
11.2.20. Синдром кода (7,3) образуется по правилу с
1

1 а
⊕а
3
⊕а
4
, с а
⊕а
3
⊕а
5
, с а
⊕а
3
⊕а
6
, с а
⊕а
2
⊕а
7
Принята комбинация 0000010. Была передана комбинация
* 0000000 ; # 0000010 ; # 0000001 ; # 1000000 ;
11.3.1. Кодовые комбинации циклического кода образуются путем :
* циклической перестановки символов
# случайной перестановки символов
# добавления символов

# отбрасывания символов
11.3.2. Одна из комбинаций циклического кода 1001. Остальные комбинации этого кода
* 0011, 0110, 1100; # 0111, 0110, 1100; # 0011, 0110, 1101; # 0011, 0101, 1100;
11.3.3. Полином, соответствующий двоичной кодовой комбинации 101, имеет вид
* z
2
+1; # z+1; # z
2
+z+1; # 1;
11.3.4. Полином, соответствующий двоичной кодовой комбинации 0011, имеет вид
* z+1; # z
2
+1; # z
2
+z+1; # 1;
11.3.5. Комбинации кода передаются в следующем порядке 011, 101, 110. Порядок следования полиномов, соответствующих этим двоичным кодовым комбинациям
* z+1; * z
2
+1 ; * z
2
+z;
11.3.6. Соответствие полинома двоичной кодовой комбинации
* 1001 ; * z
3
+1;
*0001; * 1 ;
*1110; * z
3
+z
2
+ z;
* 0101 ; * z
2
+1;
# z
3
;
# z +1;
11.3.7. Двоичная кодовая комбинация, соответствующая полиному z
2
+1:
* 101; # 110; # 000; # 001;
11.3.8. Двоичная кодовая комбинация, соответствующая полиному z
3
+z+1:
* 1011; # 1100; # 0011; # 1001; # 1101;
11.3.9. Соответствие двоичной кодовой комбинации полиному
* z
3
+1; * 1001 ;
* 1 ; *0001;
* z
3
+z
2
+ 1; *1101;
* z
2
+z; * 0110 ;
# z
3
;
# z +1;
11.3.10. Полиномы, соответствующие двоичным кодовым комбинациям, передаются в следующем порядке z
2
+z+1; z +1 ; z
2
+z; 1.
Порядок следования двоичных кодовых комбинаций, соответствующих этим полиномам
*111; *011; * 110, * 001;
11.3.11. Информационная комбинация циклического кода 1001. Образующий полином
(z
3
+z
2
+1). Комбинация циклического кода (7,4), формируемая путем перемножения , равна
* 1100101; # 1001001; # 1101000; # 1001111;
11.3.12. Информационная комбинация циклического кода 1100. Образующий полином
(z
3
+z
2
+1). Комбинация циклического кода (7,4), формируемая путем перемножения , равна
* 1011100; # 1011001; # 1011111; # 1101100;
11.3.13. Информационная комбинация циклического кода 1010. Образующий полином
(z
3
+z
2
+1). Комбинация циклического кода (7,4), формируемая путем перемножения , равна
* 1110010; # 1110110; # 1010010; # 0110010;
11.3.14. Принята комбинация 1110011 циклического кода (7,4). Образующий полином
(z
3
+z
2
+1). Синдром принятой комбинация циклического кода равен
* 001; # 111; # 010; # 100;
11.3.15. Принята комбинация 1001010 циклического кода (7,4). Образующий полином
(z
3
+z
2
+1). Синдром принятой комбинация циклического кода равен :

* 001; # 111; # 010; # 100;
11.3.16. Принята комбинация 0001011 циклического кода (7,4). Образующий полином
(z
3
+z
2
+1). Синдром принятой комбинация циклического кода равен :
* 110; # 111; # 010; # 100; # 001;
11.3.17. Принята комбинация 1001010 циклического кода (7,4). Синдром принятой комбинации 001. Была передана комбинация :
* 1001011; # 1001101; # 1001001; # 0001011; # 1001100;
11.3.18. Принята комбинация 1001001 циклического кода (7,4). Синдром принятой комбинации 010 . Была передана комбинация :
* 1001011; # 1001101; # 1001001; # 0001011; # 1001100;
11.3.19. Принята комбинация 1100111 циклического кода (7,4). Синдром принятой комбинации 010. Была передана комбинация :
* 1100101; # 1001101; # 1001001; # 1100011; # 11001110;
11.3.20. Приняты комбинации циклического кода (7,4): 1001010; 0010110; 0101111. Синдром принятых комбинаций 001. Порядок следования комбинаций с исправленной ошибкой
* 1001011 ; * 0010111; * 0101110 ;
11.4.1. Минимальное кодовое расстояние, необходимое для обнаружения двойных ошибок в комбинации равно
* 3; # 1 ; # 2 ; # 0 ;
11.4.2. Соответствие минимального кодового расстояния (справа) разрешенным кодовым комбинациям этого кода (слева
* 00, 01, 10; * 1;
* 000, 101, 110; * 2;
* 10010, 00001, 11101; *3;
# 4;
#0;
11.4.3. Минимальное кодовое расстояние, необходимое для обнаружения одиночных ошибок в комбинации равно
* 2; # 1 ; # 3 ; # 0 ;
11.4.4. Минимальное кодовое расстояние, необходимое для исправления одиночных ошибок в комбинации равно
* 3; # 2 ; # 1 ; # 0 ;
11.4.5. Минимальное кодовое расстояние, необходимое для обнаружения двойных ошибок в комбинации равно :
* 3; # 2 ; # 1 ; # 0 ;
11.4.6. Минимальное кодовое расстояние, необходимое для исправления двойных ошибок в комбинации равно
* 5; # 2 ; # 3 ; # 4 ;
11.4.7. Соответствие минимального кодового расстояния (справа) количеству исправляемых ошибок в комбинации (слева
* 3; *7;
* 1; *3;
* 5; *11;
* 10; *21;
# 9;
# 22;
# 2;

11.4.8. Код с основанием 2 и длиной кодовой комбинации 3 позволяет исправлять одиночные ошибки. Разрешенные комбинации этого кода
* 000 ; 111; # 011; 010; # 000; 110; # 111;
11.4.9. Код с основанием 2 и длиной кодовой комбинации 3 позволяет обнаруживать одиночные ошибки. Разрешенные комбинации этого кода
* 000, 101, 110 011; # 000; 010; 110; 111; # 011; 010; 000; 110;
11.4.10. Код имеет основание 2 и длину кодовой комбинации 3. Введите все комбинации этого кода в порядке возрастания десятичного эквивалента двоичных чисел
* 000 ; *001; *010; *011; * 100; *101 ; * 110 ; * 111;
11.4.11. Код, имеющий комбинации 000, 101, 011, 110 позволяет обнаруживать одиночные ошибки. Во сколько раз он проигрывает по скорости передачи безизбыточному коду
* 1.5 ; # 2 ; # 3 ; # 2.5 ;
11.4.12. Код, имеющий комбинации 000, 111, позволяет исправлять одиночные ошибки. Во сколько раз он проигрывает по скорости передачи безизбыточному коду
* 3 ; # 1.5 ; # 2 ; # 2.5 ;
11.4.13. Для реализации проверки на четность к комбинации 1010100 необходимо добавить
* 1 ; # 0; # 00; # 11;
11.4.14. Для реализации проверки на четность к комбинации 11010100 необходимо добавить
* 0 ; # 1 ; # 01; # 10; # 11;
11.4.15. Соответствие корректирующего символа (справа) кодовой комбинации (слева) для реализации проверки на четность
* 00011; * 0 ;
* 100011; * 1 ;
* 00000; * 0 ;
* 111111; * 0 ;
* 100011; * 1 ;
11.4.16. Код с проверкой на четность. Одиночная ошибка делает количество 1 в кодовой комбинации ________ и, таким образом, обнаруживается.
* нечетным ; # четным # равным 0; # равным количеству 0;
11.4.17. Используя код с проверкой на четность, мы получим минимальное кодовое расстояние для такого кода, равное
* 2 ; # 0; # 1; # 3;
11.4.18. Разрешенные кодовые комбинации кода 000 и 111. Принята кодовая комбинация
010. Наиболее вероятно, что была передана комбинация
* 000; # 010; # 101; # 111;
11.4.19. Разрешенные кодовые комбинации кода 000 и 111. Принята кодовая комбинация
110. Наиболее вероятно, что была передана комбинация :
* 111; # 110; # 000; # 001;
11.4.20. Разрешенные кодовые комбинации кода 000 и 111. Соответствие наиболее вероятных переданных комбинаций (справа) принятым кодовым комбинациям (слева
* 101 ; * 111;
* 001 ; * 000;
* 110 ; * 111;
* 100 ; * 000;
11.4.21. Разрешенные кодовые комбинации кода 000 и 111. Принята кодовая комбинация
110. Наиболее вероятно, что была передана комбинация 111, т.к. кодовые расстояния принятой комбинации от комбинаций 111 и 000 равны, соответственно
* 1 ; 2 ; # 1; 1; # 2; 1; # 0; 1;

12.1.1. Каналы в многоканальных системах связи разделяются за счет того, что они
* ортогональны
# противоположны
# коррелированы;
# зависимы
12.1.2. Способы разделения каналов в многоканальных системах связи
* частотное, временное, фазовое, кодовое (по форме
# амплитудное, частотное, фазовое, по форме
# импульсно-кодовое, временное, фазовое, кодовое (по форме
# частотное, временное, фазовое
12.1.3. При частотном разделении каналов отдельные каналы передаются
* одновременно, нов разных полосах частот
# водной и той же полосе частотно в разные интервалы времени ;
# водной и той же полосе частотно с разными начальными фазами
# одновременно, водной и той же полосе частот ;
12.1.4. При временном разделении каналов отдельные каналы передаются
* водной и той же полосе частотно в разные интервалы времени
# одновременно, нов разных полосах частот
# водной и той же полосе частотно с разными начальными фазами
# водной и той же полосе частот, одновременно ;
12.1.5. При фазовом разделении каналов отдельные каналы передаются
* водной и той же полосе частот, одновременно, нос разными начальными фазами
# водной и той же полосе частотно в разные интервалы времени ;
# одновременно, нов разных полосах частот
# водной и той же полосе частот, одновременно, нос разными амплитудами ;
12.1.6. Полоса частот одного канала в системе связи с частотным разделением 3.4 кГц. Защитные промежутки по частоте между каналами 0.6 кГц. Максимальное число каналов в полосе частот 101 кГц равно
* 25; # 24 ; # 26; # 29;
12.1.7. Полоса частот одного канала в системе связи с частотным разделением 3.4 кГц. Защитные промежутки по частоте 0.6 кГц. Максимальное число каналов в полосе частот
201 кГц равно
* 50; # 49 ; # 51; # 59;
12.1.8. Интервал дискретизации для сигнала в каждом канале при ВРК 2 мс. Длительность сигнальных импульсов в системе связи с временным разделением 0.1 мс, период следования 0.2 мс. Максимальное число каналов равно :
* 10; # 20 ; # 2; # 21;
12.1.9. Интервал дискретизации для сигнала в каждом канале 4 мс. Длительность сигнальных импульсов в системе связи с ВРК 0.2 мс, скважность 2. Максимальное число каналов равно
* 10; # 20 ; # 2; # 11;
12.1.10. Количество ортогональных несущих в системе связи с фазовым разделением каналов равно
* 2; # 1 ; # 4; # 10;

12.1.11. В системе связи с фазовым разделением каналов первый канал передается на несущей частоте sinw
0
t. Второй канал передается на несущей
* cosw
0
t; # sinw
0
t ; # sin(w
0
t+180 0
) ; # - sin(w
0
t+180 0
);
12.1.12. Каналы в многоканальной системе связи с частотным разделением каналов разделяются
* полосовыми фильтрами
# коммутаторами ; # усилителями # ограничителями ;
12.1.13. Каналы в многоканальной системе связи с временным разделением каналов разделяются
* коммутаторами ; # полосовыми фильтрами
# усилителями # согласованными фильтрами
12.1.14. Каналы в многоканальной системе связи с фазовым разделением каналов разделяются
* синхронными демодуляторами
# коммутаторами ; # усилителями # полосовыми фильтрами
12.1.15. Каналы в многоканальной системе связи с разделением сигналов по форме разделяются
* согласованными фильтрами # коммутаторами ;
# усилителями # полосовыми фильтрами
12.1.16. Причины межканальных помех при ЧРК:
* спектры сигналов бесконечны ПФ – неидеальны коммутаторы – неидеальны полоса частот системы связи – ограничена
# синхронные демодуляторы – неидеальны разность фаз несущих неравна точно 90 0
;
# взаимно-корреляционные функции сигналов неравны. Причины межканальных помех при ВРК:
* коммутаторы – неидеальны полоса частот системы связи – ограничена
# спектры сигналов бесконечны ПФ – неидеальны синхронные демодуляторы – неидеальны разность фаз несущих неравна точно 90 0
;
# взаимно-корреляционные функции сигналов неравны. Причины межканальных помех при ФРК:
* синхронные демодуляторы – неидеальны разность фаз несущих неравна точно 90 0
;
# спектры сигналов бесконечны ПФ – неидеальны коммутаторы – неидеальны полоса частот системы связи – ограничена
# взаимно-корреляционные функции сигналов неравны. Причины межканальных помех при КРК:
* взаимно-корреляционные функции сигналов неравны спектры сигналов бесконечны ПФ – неидеальны коммутаторы – неидеальны полоса частот системы связи – ограничена
# синхронные демодуляторы – неидеальны разность фаз несущих неравна точно 90 0
;
12.1.20. Соответствие устройств, осуществляющих разделение каналов, виду разделения
* ЧРК ; * полосовые фильтры
* ВРК ; * коммутаторы
* ФРК ; * синхронные демодуляторы ;
* КРК ; * согласованные фильтры
12.1.21. Соответствие устройств, осуществляющих разделение каналов, виду разделения
* частотное разделение каналов ; * полосовые фильтры
* временное разделение каналов ; * коммутаторы
* фазовое разделение каналов ; * синхронные демодуляторы ;

* кодовое разделение каналов ; * согласованные фильтры
12.1.22. Соответствие вида разделения каналов устройству, осуществляющего разделение каналов
* полосовые фильтры * частотное разделение каналов ;
* коммутаторы * временное разделение каналов ;
* синхронные демодуляторы ; * фазовое разделение каналов ;
* согласованные фильтры * кодовое разделение каналов ; Задания на установление правильной последовательности
1   ...   9   10   11   12   13   14   15   16   17


написать администратору сайта