Главная страница
Навигация по странице:

  • 1.3 Описание выбранного прототипа

  • 2. Расчетная часть

  • 2.2 Расчеты на прочность

  • 2.2.1 Расчет на прочность барабана лебедки

  • 1. Анализ существующих конструкций буровых лебедок


    Скачать 3.41 Mb.
    Название1. Анализ существующих конструкций буровых лебедок
    Дата14.06.2022
    Размер3.41 Mb.
    Формат файлаdoc
    Имя файлаvevivi.ru.doc
    ТипРеферат
    #590939
    страница2 из 4
    1   2   3   4

    1.2 Анализ конструкций буровых лебедок зарубежного производства
    Фирмы США выпускают лебедки, рассчитанные на самую различную глубину бурения (табл. 1.2), с механическим, дизель-гидравлическим и электрическим приводами ([2], табл. II.11). Обычно на лебедках применяют ленточный тормоз, который способен к самозатягиванию и хорошо поддается ручному управлению. Дизельный привод для лебедок выполняется в трех вариантах: передача мощности с помощью цепной трансмиссии, через гидротрансформатор (дизель-гидравлический привод) и через муфтовые передачи (табл. 1.3) ([2], табл. II.12).

    Таблица 1.2 Технические характеристики лебедок, выпускаемых фирмами США


    Фирма Braden Winch, отделение фирмы Braden Industries, Inc., предлагает широкий выбор лебедок, используемых при разработке нефтяных и газовых месторождений. Эти лебедки устанавливают на автомобилях, транспортирующих буровые установки. Фирма производит также автомобили, тягачи, сварочные машины и транспортные средства общего назначения (более подробное описание продукции фирмы приведено в рекламном разделе сборника).

    Таблица 1.3 Техническая характеристика муфтовых передач лебедок, выпускаемых фирмами США



    1.3 Описание выбранного прототипа
    По заданию прототипом в нашей работе является буровая лебедка ЛБУ-1100, кинематическая схема которой приведена на рисунке 1.4.

    Техническая характеристика лебедки приведена в таблице 1.1

    На рисунке 2.1 ([3], с. 174-175)показана буровая лебедка ЛБУ-1100, основные конструктивные элементы которой повторяются в других моделях современных отечественных и зарубежных лебедок для эксплуатационного к глубокого разведочного бурения. Лебедка монтируется на сварной металлической раме 4, приспособленной для ее перевозки и перемещения подъемным краном при монтажно-демонтажных работах. К раме приварены корпуса масляных ванн 3 и 10 цепных передач, соединяющих лебедку с коробкой перемены передач. В отцентрированных отверстиях корпусов масляных ванн установлен подъемный вал с барабаном 7 буровой лебедки.

    В корпусе 10 размещается вторая цепная передача, используемая для привода вала 11 трансмиссии ротора. Вал трансмиссии ротора на сферических роликоподшипниках устанавливается в дополнительной расточке корпуса 10 и выносной опоре 12, закрепленной на рамс лебедки. Масляные ванны, закрытые крышками и промежуточными кожухами 15 и 19, соединяются с коробкой перемены передач. Для устранения утечек масла, используемого для смазки цепных передач, в стыковых разъемах масляных ванн устанавливаются прокладки.

    Промежуточные кожухи при транспортировке лебедки вводятся во внутреннюю полость масляных ванн, а наружные их фланцы закрываются кожухами 16 и 18. На раме со стороны пульта 2 бурильщика смонтированы стойка 8 балансира, тормозной вал 17 и вал 5 рукоятки управления ленточным тормозом. Электромагнитный тормоз 14 крепится к раме соосно с подъемным валом и соединяется с ним кулачковой муфтой 13. На раме установлены два тахогенератора 9 и 20.

    Тахогенератор 9 предназначен для контроля частоты вращения стола ротора и соединяется цепной передачей с валом 11 трансмиссии ротора. Тахогенератор 20 соединяется с валом электромагнитного тормоза и предназначен для контроля скорости спуска колонн труб при автоматическом режиме работы электротормоза. На стойке 1 установлен командоаппарат комплекса АСП для блокировки перемещений механизма захвата свечи и талевого блока. Привод командоаппарата осуществляется от цепной звездочки на подъемном валу лебедки.

    К раме крепится воздухопровод 6 системы пневматического управления лебедкой.

    Подъемный вал (Приложение А) —основа буровой лебедки. Между коренными подшипниками 15 подъемного вала 19 напрессованы ступицы дисков барабана 18. В правом более доступном для работы диске имеется внутренний прилив (сечения А—А и С—С) для крепления талевого каната планкой 32 и болтами 33. В буровых лебедках канат крепится с внутренней либо наружной стороны диска. Узел крепления должен быть надежным и удобным в работе. Наружное расположение узла крепления более доступно и удобно для быстрого крепления и освобождения каната. Недостаток наружного крепления — повреждение витков каната в результате трения с верхней кромкой углубления для заделки каната.

    Наиболее распространены простые в изготовлении барабаны с гладкой наружной поверхностью. Для улучшения намотки барабан лебедки снабжается съемными накладками, имеющими параллельные и переходные спиральные канавки для укладки витков каната. Симметричное расположение параллельных и спиральных участков канавки на длине отдельных витков способствует снижению инерционных нагрузок от дисбаланса, создаваемого в результате одностороннего увеличения радиуса навивки в местах перехода смежных слоев каната.





    Рисунок 2.1 Буровая лебедка ЛБУ-1100
    К дискам барабана крепятся тормозные шкивы 16 (Приложение А). В рассматриваемой конструкции тормозные шкивы снабжены кольцевой рубашкой для охлаждающей воды. Вода в тормозных шкивах циркулирует по замкнутому циклу. Для этого через устройство 8 на торце вала и трубку, установленную внутри вала, по трубам 20 вода поступает в правый, а затем в левый шкив, из которого по кольцевому пространству между отверстием вала и подводящей трубкой отводится в приемный бак для последующего использования. Пробки 17 в тормозных шкивах служат для слива воды во избежание ее замерзания при длительных остановках лебедки.

    Коренные роликовые радиально-сферические подшипники 15 подъемного вала, установленные в расточках корпуса масляной ванны, смазываются густой смазкой через тавотницы 34. Внутренние обоймы роликоподшипников фиксируются па валу распорными втулками, а наружные — торцовыми крышками корпуса подшипника. Для компенсации температурных удлинений вала между корпусом 35 и наружной обоймой 36 одного из подшипников имеется необходимый зазор (узел 1 Приложение А). Радиальные и торцовые лабиринтные уплотнения в крышках служат для удержания смазки в подшипниках.

    Цепное колесо 1 тихоходной передачи и шкив шинно-пневматической муфты 12 имеют общую ступицу 2, посаженную на вал на свободно вращающихся роликовых радиально-сферических подшипниках, подобных подшипнику 21. На валу внутренние обоймы подшипников фиксируются втулками. Наружная обойма правого подшипника в расточке ступицы фиксируется от осевых перемещений пружинным кольцом и крышкой. Левый подшипник в ступице устанавливается свободно. Обод 10 шинно-пневматической муфты 12 планшайбой 5 крепится к ступице 6, напрессованной на вал.

    Воздух для включения шинно-пневматической муфты 12 поступает через вертлюжок 7, воздухопровод 4 и клапан-разрядник 11. При отказе муфты и в случае недостаточного давления воздуха для соединения муфты используются аварийные болты 9, которые ввертываются в приливы планшайбы и входят в пазы шкива. По правилам безопасности установка аварийных болтов 9 обязательна при использовании буровой лебедки для подъема вышки. Разъемное соединение цепного колеса 1, шкивов 14, 24 и планшайб 5, 26 со ступицами позволяет ремонтировать муфты и заменять цепное колесо без съема напрессованных на вал ступиц.

    Кожух 13 предохраняет шкив 14 от попадания масла. Подшипники ступицы 2 смазываются с помощью масленки 3 с трубкой, ввернутой в ступицу. Аналогично на другом конце подъемного вала установлены шинно-пневматическая муфта 25 и цепные колеса 22 «быстрой» скорости лебедки и 23 трансмиссии ротора. Воздух к шинно-пневматической муфте 25 поступает через вал электромагнитного тормоза, вертлюжок 28, отверстие в вале 19, воздухопровод 30 и клапан-разрядник 31.

    Кулачковые полумуфты 27 и 29 используются для соединения подъемного вала с валом электромагнитного тормоза. Для устранения биения при вращении крупные детали подъемного вала и вал в сборе подвергаются балансировке. Все болтовые соединения подъемного вала лебедкой законтрены.

    Вал 9 привода ротора устанавливается на двух роликовых радиально-сферических подшипниках 1 (рисунок 2.2). Левый подшипник устанавливается в корпусе масляной ванны. Корпус правого подшипника крепится к раме буровой лебедки. Подшипники закрыты фланцевыми крышками, снабженными лабиринтным уплотнением. Ведущее двухрядное цепное колесо 3 вращается от подъемного вала и установлено на ступице 11, закрепленной на валу шпонкой. Ведомое цепное колесо z = 27 выполнено в виде шкива-звездочки 4, свободно вращающейся относительно вала на роликоподшипниках 10.

    Планшайба 7 шинно-пневматической муфты 6 с помощью шпонки жестко закреплена на валу 9. Воздух в муфты подводится через вертлюжок 12 и отверстия в вале. В аварийных случаях для соединения муфты могут быть использованы болты 8. На вертлюжке 12 имеется цепная звездочка для привода тахогенератора, контролирующего частоту вращения стола ротора. Противоположная консоль вала 9 может быть использована для соединения с двигателем в случае индивидуального привода ротора. Подшипники смазываются через тавотницы 2 и 5.



    Рисунок 2.2 Вал привода ротора в сборе
    2. Расчетная часть
    2.1 Расчет и выбор параметров буровой лебедки
    К основным параметрам буровых лебедок относятся мощность, скорости подъема, тяговое усилие, длина и диаметр барабана лебедки. От правильного выбора указанных параметров зависят производительность, экономичность, габариты и масса лебедки, которые существенно влияют на эффективность бурения, транспортабельность и монтажеспособность всей буровой установки.

    Определяем скорость ходовой струны каната на i-ой скорости по известной зависимости
    (2.1.1)
    где vi – скорость подъема на i-ой скорости, м/с;

    iт.с – кратность оснастки.

    По ([3], табл. II.3) iт.с = 14.

    Максимальная скорость подъема ограничивается безопасностью управления процессом подъема и предельной скоростью ходовой струны, при которой обеспечивается нормальная навивка каната на барабан лебедки. Для предотвращения затаскивания талевого блока на кронблок из-за ограниченного тормозного пути скорость подъема крюка, согласно требованиям безопасности, не должна превышать 2 м/с.

    Для талевых механизмов с кратностью оснастки принимаем tт.с˂10 vmax=2,0 м/с.

    Минимальная скорость подъема — резервная и используется для технологических целей: при расхаживании колонн бурильных и обсадных труб; при ликвидации осложнений и аварий, связанных с затяжкой и прихватом бурильных труб; при подъеме колонны труб через закрытые превенторы; при подъеме колонны труб в случае отказа одного из двигателей привода лебедки. Величина минимальной скорости подъема принимается в установленных практикой бурения пределах: vmin=0,2 м/с.

    Отношение предельных скоростей определяет диапазон регулирования скоростей подъема лебедки:
    (2.1.2)
    Промежуточные скорости подъема определяются из геометрического ряда чисел
    (2.1.3)
    где φ-знаменатель геометрической прогрессии.
    (2.1.4)
    где k — число передач.

    Разбивка скоростей в геометрической прогрессии позволяет обеспечить относительно равное изменение смежных скоростей, и поэтому большая часть скоростей располагается в зоне низших передач, используемых для подъема колонн бурильных и обсадных труб сравнительно большего веса. Наряду с этим геометрический ряд передач позволяет сохранить степень загрузки буровой лебедки при переходе с одной передачи на последующую.

    В соответствии с числом передач прототипа, принимаем k = 6.

    Итак, определяем промежуточные скорости подъема:

    -вторая скорость

    -третья скорость

    -четвертая скорость

    -пятая скорость

    -шестая скорость окончательно

    Определяем скорости ходовой струны каната:

    -первая скорость

    -вторая скорость


    -третья скорость

    -четвертая скорость

    -пятая скорость

    -шестая скорость


    Диаметр барабана выбираем в зависимости от диаметра талевого каната:
    (2.1.5)
    где dк-диаметр каната, м.

    В соответствии с диаметром каната dк=32 мм ([3], табл. 11.3), применяемом на прототипной лебедке принимаем dк=32 мм.

    Принимаем Dб=740 мм.

    Диаметр конечного слоя навивки каната на барабан

    (2.1.6)
    где α=0,93 — коэффициент, учитывающий уменьшение диаметра навивки вследствие смещения каната в промежутки между витками нижнего слоя;

    К-число слоев навивки.

    В соответствии с числом слоев навивки К=3 ([3], табл. 11.3), применяемом на прототипной лебедке принимаем К=3.

    По допускаемым отклонениям ходовой струны талевого каната длину барабана выбираем в пределах
    (2.1.7)
    где lб- длина барабана, м;

    Н – расстояние между осями подъемного вала буровой лебедки и направляющего шкива кронблока, м.

    Принимаем Н примерно равной высоте буровой вышки Н=45 м.

    Принимаем lб=1500мм.

    2.2 Расчеты на прочность
    Расчеты на прочность деталей и узлов лебедки выполняются по тяговому усилию, возникающему при допускаемой нагрузке на крюке, с учетом веса подвижных частей талевого механизма, кратности оснастки и потерь на трение при подъеме.

    Определяем наибольший крутящий момент Мкр на подъемном валу лебедки:
    (2.2.1)
    где N – номинальная приводная мощность лебедки, Вт;

    ωбугловая скорость вращения барабана, с-1.

    Принимаем N = 900*103 Вт.

    Угловая скорость вращения барабана определится по формуле
    (2.2.2)

    Зная максимальный диаметр навивки каната на барабане Dк и наибольший крутящий момент Мкр на подъемном валу лебедки можно вычислить натяжение ведущей ветви каната
    (2.2.3)

    2.2.1 Расчет на прочность барабана лебедки

    После выбора конструкции и определения основных размеров, барабана необходим его расчет на прочность. При навивке каната в стенках бочки барабана возникают напряжения сжатия, изгиба и кручения. В связи с тем что осевой и полярный моменты сопротивления сечения барабана большие, напряжения изгиба и кручения, возникающие в стенке барабана, несущественны. Поэтому расчет проводят только по напряжениям сжатия ([1], с.309)
    (2.2.1.1)
    где Рв - натяжение ведущей ветви каната, Н;

    s — толщина стенки бочки барабана, м;

    А — коэффициент, зависящий от числа навиваемых слоев и других факторов;

    сж]-допустимые напряжения сжатия, Па.

    Принимаем по аналогии с прототипом s = 80 мм = 0,08 м.

    Допустимые напряжения сжатия материала бочки барабана [σсж]=500МПа ([1], табл. 6), считая, что бочка барабана изготовлена из углеродистой стали 30.

    При числе слоев навивки К=3 коэффициент А равен([1], с. 309):
    (2.2.1.2)
    где λ — коэффициент, зависящий от диаметра каната, модуля его упругости Ек и толщины стенки барабана

    (2.2.1.3)
    где Е = 2,1*105 МПа —модуль упругости стали;

    Ек- модуль упругости каната, МПа.
    (2.2.1.4)
    где а=0,33…0,35 ([1], с.157).





    Условие прочности выполняется.
    1   2   3   4


    написать администратору сайта