1. Биология наука о жизни, об общих закономерностях существования и развития живых существ. Место и задачи предмета в системе медицинского образования. Биология
Скачать 0.58 Mb.
|
Раздел 2 1 . Клетка – элементарная открытая биологическая система. Типы клеточной организации. Основные положения клеточной теории. клетка – структурная единица всего живого. клетки раститентй и животных организмов сходны по строению. Клетки представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений. Клетка, таким образом, несет полную характеристику жизни. Вне клетки не существует настоящей жизнедеятельности. Поэтому в природе планеты ей принадлежит роль элементарной структурной, функциональной и генетической единицы. Это означает, что клетка составляет основу строения, жизнедеятельности и развития всех живых форм — одноклеточных, многоклеточных и даже неклеточных. Благодаря заложенным в ней механизмам клетка обеспечивает обмен веществ, использование биологической информации, размножение, свойства наследственности и изменчивости, обусловливая тем самым присущие органическому миру качества единства и разнообразия. Занимая в мире живых существ положение элементарной единицы, клетка отличается сложным строением. При этом определенные черты обнаруживаются во всех без исключения клетках, характеризуя наиболее важные стороны клеточной организации как таковой. этапы развит клет теории: 1665г. Роберт Гук – впервые увид под микроскопом насрезе пробки клетки и назвал их «celula». 1674г. – Антуан Ван Левингук – изучает каплю. находит простейших. изучает различные жидкости организма находит в крови – клетки, в сперме – сперматозоиды. (по началу принял их за простейших сожителей). 1825г. – Карл Бэр – открыл яйцеклетку млекопитающего. 1825г. – Я.Пуркинье – увидел жидкое содержимое клетки которое назвал – протоплазма. 1831г. – Роберт Браун – увидел клеточное ядро. 1838(39)г. – Шлейден – изучает растен. общность стоения. 1838г. – Теодор Ван Шванн – создал 2 положен клет теории. 1858г. – Рудольф Вирхов – формирует положение «клетка от клетки» (мож возникнуть из предшеств клетки) 1850г. – Колликер – открыл митохондрий. 1877-81г. Руссов и Горажанкин – обнаружили цитоплазматические мостики и назвали их плазмадесмы. 1898г. –Камило Гольджи – открыл к. гольджи. (вообще 3 положения: (1) соотносит клетку с живой природой планеты в целом. (оно утверждает, что жизнь, какие бы сложные или простые формы она ни принимала, в её структурном, функциональном и генетическом отношении обеспечивается в конечном итоге только клеткой. (2) указывает что в настоящих условиях единств способом возникновения новых клеток является деление предсуществующих клеток. (3) это полож соотносит клетку с многоклеточными организмами, для которых характерен принцип целостности и системной оргинизации. ) основ полож соврем клет теор: 1) клетка- основная структурная единица живого. 2) клетки всех организмов гомологичны. (сходны по строению. хим составу. обмену веществ и основным закономерностям процессов жизнедеятельности; что свидетельствует о единстве происхождения всех клеток). 3) новые клетки образ путём деления исходной на 2 дочерние. клетка- единица размножения. 4) клетки многоклет организмов сходны по строению, происхождения и выполняемым функциям. объединяются в ткани которые подчиняются единым механизмам регуляции (межклеточные. гуморальные. нервные.) 5) клетки многоклет организмов тиотентны (Тоесть каждая клетка обладает одинаковым набором генов) -> не дифференцированные клетки могут дифференцироваться (тоесть преобразовываться в любой вид клетки) однако экспрессия генов в различных клетках отлич что приводит к их дифференцировке.
Стабильная популяция. Клетки этой популяции имеют наибольшую продолжительность жизни, высокодифференцированы и не способны делиться. К такой популяции относятся нервные клетки, клетки миокарда. Растущая популяция. Клетки этой популяции высокодиф-ференцированные, имеют большую продолжительность жизни. Они составляют основную массу клеток внутренних органов (печень, поджелудочная железа, и т. д.). Эти клетки не утратили способности к делению, они могут перестраивать свой метаболизм, снижать уровень дифференцировки и делиться. Обновляющаяся популяция. Среди клеток этой популяции есть два типа: высокодифференцированные и недифференцированные (стволовые или камбиальные клетки).Высокодифференцировнные клетки живут недолго (часы, сутки, месяцы), неспособны к делению, постоянно отмирают. Например, клетки поверхностного слоя эпидермиса, клетки крови, клетки слизистой оболочки кишечника. Недифференцированные (стволовые) клетки этой популяции постоянно делятся, дифференцируются и замещают погибшие. Так, стволовые клетки эпидермиса находятся в самом нижнем (мальпигиевом) слое; стволовые клетки слизистой оболочки кишечника - в глубоких отделах кишечных крипт, стволовые клетки крови - в красном костном мозге. Таким образом, ЖЦ клеток стабильной популяции и дифференцированных клеток обновляющейся популяции равен G0, в их жизненном цикле нет митотического цикла. ЖЦ стволовых клеток обновляющейся популяции состоит из подготовки к делению и деления, т.е. равен МЦ (периодом G0 в данном случае можно пренебречь, т.к. клетки функционально не активны, находятся в состоянии покоя). Такой ЖЦ также имеют клетки злокачественных опухолей, т. к. они не дифференцируются в нормальные клетки, а снова и снова вступают в деление. ЖЦ клеток растущей популяции состоит из G0+(G1+S+G2+M) 2. Строение плазмолеммы: надмембранный, мембранный и субмембранный комплексы. Медицин-ские аспекты функций плазмолеммы. Плазмолемма( плазматическая мембрана)-слой липидов из двух рядов молекул, гидрофобные участки которых повернуты друг к другу, а гидрофильные-на поверхности слоя. В состав плазмолеммы входят: •мембранный комплекс-бислой фосфолипидов и встроенных в него белков. Выделяют белки периферические(по внутренней или наружной пов-ти), интегральные( прочно встроенные в мембрану), полупогруженные(когда один конец на поверхности слоя, а другой в гидрофобном слое) и трансмембранные белки( полностью «прошивают» мембрану). Функция этих белков-рецепторная, структурная, ферментативная, антигенная, транспортная. •надмембранный комплекс-гликопротеиды, углеводные цепи •субмембранный комплекс-белковые нитевидные структуры( тонкие фибриллы, микрофибриллы, микротрубочки) Функции мембраны: •обособление клеток от внешней среды, защита от механического и химического взаимодействия •восприятие внеклеточных сигналов( рецепторная) и передача их внутрь клетки •контактное взаимодействие с межклеточным в-вом и другими клетками при образовании органов и тканей •соединение с элементами цитоскелета-поддержание формы клеток и движение гиалоплазмы внутри клетки •контролируемый транспорт в-в Медицинские аспекты функции плазмолеммы: 1-рецепторы гистосовместимости( переливание крови, трансплантация органов) 2-нарушение структуры белков-рецепторов 3-контактное торможение роста клеток( опухолевых клеток) 4-нарушение транспорта некоторых веществ в клетки( развитие атеросклероза и тд) 3. Строение ядра клетки: кариолемма, кариоплазма, хроматин, ядрышки. Понятие об эухроматине и гетерохроматине. Функции ядра. Строение и функции клеточного ядра служит хранилищем наследственной информации, содержащейся в хромосомах. Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами (слияние внешней и внутренней мембраны), благодаря которым возможен обмен веществами между ядром и цитоплазмой. Полость ядерной оболочки называется перинуклеарным пространством. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза РНК и тРНК. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. Сборка рибосом также происходит в ядре, в ядрышках. Основные компоненты ядра - хромосомы, образованные из молекулы ДНК и различных белков. оит из 1)поверхн аппарата ядра (в нем выдлел: 2 мембраны, перинуклеарн пространств, поровые комплексы, ламину.) 2) кариоплазмы (нуклеоплазмы) 3) хроматина ( в нём эухроматин и гетерохроматин) 4) ядрышка (грануляр и фибриляр компонент.) Ядро – это структура клетки которая выполняет функцию хранения и передачи инф, а так же регулирует все жизненные процессы клетки. Ядро несёт в себе генетическую (наследственную) инф в виде ДНК. Ядра обычно имеют шаровидную или яйцевидную форму. Я. окружено ядерн оболочкой. Ядерная оболочка пронизана ядерными порами. Через них ядро обменивается веществами с цитоплазмой(внутр средой клетки). Наружная мембрана переходит в эндоплпзматич ретикулум и может быть усеяна рибосомами. Отношение размеров ядра и клетки зависит от функциональной активности клетки. Большинство клеток одноядерные. Двуядерными могут быть кардиомиоциты. Всегда двуядерны инфузории. В них характерен ядерный дуализм.(то есть ядра различ по строению и финкциям). Малое ядро (генеративное) – диплойдное. Оно обеспечивает только половой процесс у инфузорий. Большое (вегетативное) ядро полиплойдное. Оно регулирует все остальные жизненные процессы. Многоядерными бывают клетки некоторых простейших и клетки скелетной мускулатуры. П.А.Я. или кариотека ) имеет микроскопическую толщину и поэтому виден в световой микроскоп. Поверхностный аппарат ядра включает: а)ядерную оболочку, или кариолемму;. б)паровые комплексы; в)периферическую плотную пластинку (ППП), или ламину. (1) Ядерная оболочка (кариолемма). состоит из 2 мембран - наружной и внутренней, разделённых перинукляеарным пространством. Обе мембраны имеют такое же жидкосто-мозаичное строение, как и плазматическая мембрана, и различаются по набору белков. Среди этих белков имеются ферменты, пере-носчики и рецепторы. Наружная ядерная мембрана является продолжением мембран грЭПС и может быть усеяна рибосомами, на которых идёт синтез белка. Со стороны цитоплазмы наружная мембрана окружена сетью промежуточных (ви-ментиновых) фипаментов. Между наружной и внутренней мембранами находится перинуклеарное пространство -полость шириной 15-40 нм, содержимое которого сообщается с полостями каналов ЭПС. По составу перинуклеарное пространство близко к гиалоплазме и может содержать синтезированные рибосомами белки. Главная функция кариолеммы - изоляция гиалоплазмы от кариоплазмы. Специальные белки ядерных мембран, расположенные в области ядерных пор, осуществляют транспортную функцию. Ядерная оболочка пронизана ядерными порами, через которые осуществляется связь кариоплазмы и гиалоплазмы. Для регуляции такой связи в порах находятся (2) поровые комплексы. Они занимают 3-35% поверхности ядерной оболочки. Число ядерных пор с поровыми комплексами является изменчивой величиной и зависит от активности ядра. В области ядерных пор наружная и внутренняя ядерные мембраны сливаются. Совокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Типичный поровый комплекс представляет собой сложную белковую структуру - содержит более 1000 молекул белка. В центре поры расположена центральная белковая глобула (гранула), от которой по радиусу отходят тонкие фибриллы к периферическим белковым глобулам, образуя диафрагму поры. По периферии ядерной поры находятся две параллельные кольцевые структуры диаметром 80-120 нм (по одному с каждой поверхности кариолеммы), каждое из которых образовано 8 белковыми гранулами (глобулами). Белковые глобулы перового комплекса подразделяются на центральные и периферические. С помощью периферических глобул осуществляется транспорт макромолекул из ядра в гиалоплазму. (фиксируются в мембране специальным интегральным белком. От этих гранул к центру сходятся белковые фибриллы, формирующие перегородку - диафрагму поры) В нем участвуют специальные белки периферических глобул - нуклеопорины. В периферических глобулах имеется особый белок - переносчик молекул т-РНК Центральная глобула специализируется на транспорте и-РНК из ядра в гиалопдазму. В её составе имеются ферменты, участвующее в химической модификации иРНК - ее процессинге. Гранулы поровых комплексов структурно связаны с белками ядерной ламины, которая участвует в их организации Функции комплекса ядерной поры: 1. Обеспечение регуляции избирательного транспорта в-в между цитоплазмой и ядром. 2. Активный перенос в ядро белков Перенос в цитоплазму субъединиц рибосом Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нуклеосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекрученными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромосом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом. классификация хроматина: 1) эухроматин (активный деспирализованный. на нем происход считывание инф (транскрипция). в ядре выявляется как более светлые участки ближе к центру ядра) Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и открыты для транскрипции. 2) гетерохроматин (нерабочий спирализованный, конденсированный, более компактный В ядре выявляется в виде глыбок на периферии.) делится на: конститутивный (всегда неактивен, никогда не переходит в эухроматин) и Факультативный (при определён условиях или на определен стадиях иммунного цикла может переходить в эухроматин). располагается ближе к оболочке ядра, более компактный. Примером скопления факульт гетерохроматина является тельце Барра - инактивированная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохроматина) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. Хроматин и хромосомы представляют собой дезоксирибонуклеопротеиды (ДНП), но хроматин - это рас-крученное, а хромосомы - скрученное состояние. Хромосом в интерфазном ядре нет, хромосомы появляются при разрушении ядерной оболочки (во время деления) 4.Классификация органоидов клетки по строению и по функции. Строение и функции мембранных органоидов клетки: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, пероксисомы. Органеллы (organellae) являются обязательными микроструктурами для всех клеток, выполняющими определенные жизненно важные функции. Различают мембранные и немембранные органеллы. К мембранным органеллам, отграниченным от окружающей их гиалоплазмы мембранами, относятся эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии. Эндоплазматическая сеть представляет собой единую непрерывную структуру, образованную системой цистерн, трубочек и уплощенных мешочков. На электронных микрофотографиях различают зернистую (шероховатую, гранулярную) и незернистую (гладкую, агранулярную) эндоплазматическую сеть. Внешняя сторона зернистой сети покрыта рибосомами, незернистая лишена рибосом. Зернистая эндо-плазматическая сеть синтезирует (на рибосомах) и транспортирует белки. Незернистая сеть синтезирует липиды и углеводы и участвует в их обмене (например, стероидные гормоны в корковом веществе надпочечников и клетках Лейдига (сустеноцитах) яичек; гликоген - в клетках печени). Одной из важнейших функций эндоплазматической сети является синтез мембранных белков и липидов для всех клеточных органелл. комплекс Гольджи представляет собой совокупность мешочков, пузырьков, цистерн, трубочек, пластинок, ограниченных биологической мембраной. Элементы комплекса Гольджи соединены между собой узкими каналами. В структурах комплекса Гольджи происходят синтез и накопление полисахаридов, белково-углеводных комплексов, которые выводятся из клеток. Так образуются секреторные гранулы. Комплекс Гольджи имеется во всех клетках человека, кроме эритроцитов и роговых чешуек эпидермиса. В большинстве клеток комплекс Гольджи расположен вокруг или вблизи ядра, в экзокринных клетках - над ядром, в апикальной части клетки. Внутренняя выпуклая поверхность структур комплекса Гольджи обращена в сторону эндоплазматической сети, а внешняя, вогнутая, - к цитоплазме. Мембраны комплекса Гольджи образованы зернистой эндоплазматической сетью и переносятся транспортными пузырьками. От внешней стороны комплекса Гольджи постоянно отпочковываются секреторные пузырьки, а мембраны его цистерн постоянно обновляются. Секреторные пузырьки поставляют мембранный материал для клеточной мембраны и гликокаликса. Таким образом обеспечивается обновление плазматической мембраны. Лизосомы представляют собой пузырьки диаметром 0,2-0,5 мкм, содержащие около 50 видов различных гидролитических ферментов (протеазы, липазы, фосфолипазы, нуклеазы, гликозидазы, фосфатазы). Лизосомальные ферменты синтезируются на рибосомах зернистой эндоплазматической сети, откуда переносятся транспортными пузырьками в комплекс Гольджи. От пузырьков комплекса Гольджи отпочковываются первичные лизосомы. В лизосомах поддерживается кислая среда, ее рН колеблется от 3,5 до 5,0. Мембраны лизосом устойчивы к заключенным в них ферментам и предохраняют цитоплазму от их действия. Нарушение проницаемости лизосомальной мембраны приводит к активации ферментов и тяжелым повреждениям клетки вплоть до ее гибели. Во вторичных (зрелых) лизосомах (фаголизосомах) происходит переваривание биополимеров до мономеров. Последние транспортируются через лизосомальную мембрану в гиалоплазму клетки. Непереваренные вещества остаются в лизосоме, в результате чего лизосома превращается в так называемое остаточное тельце высокой электронной плотности. Митохондрии (mitochondrii), являющиеся «энергетическими станциями клетки», участвуют в процессах клеточного дыхания и преобразования энергии в формы, доступные для использования клеткой. Их основные функции - окисление органических веществ и синтез аденозинтрифосфорной кислоты (АТФ). Много крупных митохондрий в кардиомиоцитах, мышечных волокнах диафрагмы. Они расположены группами между миофибриллами, окружены гранулами гликогена и элементами незернистой эндоплазматической сети. Митохондрии являются органеллами с двойными мембранами (толщина каждой около 7 нм). Между наружной и внутренней митохондриальными мембранами расположено меж-мембранное пространство шириной 10-20 нм. Митохондрии - микроскопические двумембранные полуавтономные органоиды общего назначения, обеспечивающие клетку энергией, получаемой благодаря процессам окисления и запасаемой в виде фосфатных связей АТФ. Митохондрии также участвуют в биосинтезе стероидов, окислении жирных кислот и синтезе нуклеиновых кислот. Присутствуют во всех эукариотических клетках. В прокариотических клетках митохондрий нет, их функцию выполняют мезосомы - впячивания наружной цитоплазматической мембраны внутрь клетки. Митохондрии могут иметь эллиптическую, сферическую, палочковидную, нитевидную и др. формы, которые могут изменяться в течение определенного времени. Количество митохондрий в клетках, выполняющих различные функции, варьирует в широких пределах - от 50 и достигая в наиболее активных клетках 500-5000. Их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии (мышечные клетки). В клетках печени (гепатоцитах) их число составляет 800. а занимаемый ими объем равен примерно 20% объема цитоплазмы. Размеры митохондрий составляют от 0,2 до 1-2 мкм в диаметре и от 2 до 5-7 (10) мкм в длину. На светооптическом уровне митохондрии выявляются в цитоплазме специальными методами и имеют вид мелких зерен и нитей (что обусловило их название - от греч. mitos - нить и chondros - зерно). В цитоплазме митохондрии могут располагаться диффузно, однако обычно они сосредоточены в участках максимального потребления энергии, например, вблизи ионных насосов, сократимых элементов (миофибрилл) органелл движения (аксонем спермия, ресничек), компонентов синтетического аппарата (цистерн ЭПС). Согласно одной из гипотез, все митохондрии клетки связаны друг с другом и образуют трехмерную сеть. Митохондрия окружена двумя мембранами - наружной и внутренней, разделенных межмембранным пространством, и содержат митохондриальный матрикс, в который обращены складки внутренней мембраны - кристы. * Наружная митохондриальная мембрана гладкая, по химическому составу сходна с наружной цитоплазматической мембраной и обладает высокой проницаемостью для молекул массой до 10 килодальтон, проникающих из цитозоля в межмембранное пространство. По своему составу она похожа на плазмалемму, 25% составляют белки, 75% липиды. Среди липидов присутствует холестерол. Наружная мембранаа содержит много молекул специализированных транспортных белков (например, поринов), которые формируют широкие гидрофильные каналы и обеспечивают ее высокую проницаемость, а также небольшое количество ферментных систем. На ней находятся рецепторы, распознающие белки, которые переносятся через обе митохондриальные мембраны в особых точках их контакта - зонах слипания. * Внутренняя мембрана имеет выросты внутрь - гребни или кристы, делящие матрикс митохондрии на отсеки. Кристы увеличивают площадь поверхности внутренней мембраны. Таким образом, внутреняя митохондриальная мембрана по площади превосходит наружную. Кристы расположены перпендикулярно или продольно длине митохондрии. Кристы по форме могут быть везикулярные, тубулярные или ламеллярные. Химический состав внутренней мембраны митохондрий сходен с мембранами прокариот (например, в ней присутствует особый липид - кардиодипин и отсутствует холестерол). Во внутренней митохондриальной мембране преобладают белки, составляющие 75%. Во внутреннюю мембрану встроены белки трех типов (а) белки электрон-транспортной цепи (дыхательной цепи) - НАД'Н-дегидрогеназа и ФАД'Н дегидрогеназа - и другие транспортные белки, (б) грибовидные тельца АТФ-синтетазы (головки которых обращены в сторону матрикса) и (в) часть ферментов цикла Кребса (сукцинатдегидрогеназа). Внутренняя митохондриальная мембрана отличается чрезвычайно низкой проницаемостью, транспорт веществ осуществляется через контактные сайты. Низкая проницаемость внутренней мембраны для мелких ионов из-за высокого содержания фосфолипида Митохондрии - полуавтономные органоиды клетки, т.к. содержат собственную ДНК, полуавтономную систему репликации, транскрипции и собственный белоксинтезируюший аппарат - полуавтономную систему трансляции (рибосомы 70S типа и т-РНК). Благодаря этому митохондрии синтезируют часть собственных белков. Митохондрии могут делиться независимо от деления клетки. Если из клетки удалить все митохондрии, то новые в ней не появятся. Согласно теории эндосимбиоза митохондрии произошли от аэробных прокариотических клеток, которые попали в клетку хозяина, но не переварились, вступили на путь глубокого симбиоза и постепенно, утратив автономность, превратились в митохондрии. Митохондрии - полуавтономные органоиды, что выражается следующими признаками: 1) наличие собственного генетического материала (нити ДНК), что позволяет осуществлять синтез белка, а также позволяет самостоятельно делиться независимо от клетки; 2) наличие двойной мембраны; 3) пластиды и митохондрии способны синтезировать АТФ (для хлоропластов источник энергии - свет, в митохондриях АТФ образуется в результате окисления органических веществ). Функции митохондрий: 1) Энергетическая - синтез АТФ (отсюда эти органоиды и получили название «энергетических станций клетки»): При аэробном дыхание на кристах происходит окислительное фосфорилирование (образование АТФ из АДФ и неорганического фосфата за счет энергии, освободившейся при окислении органических веществ) и перенос электронов по электрон-транспортной цепи. На внутренней мембране митохондрии расположены ферменты, участвующие в клеточном дыхании; 2) участие в биосинтезе многих соединений (в митохондриях синтезируются некоторые аминокислоты, стероиды (стероидогенез), синтезируется часть собственных белков), а также накопление ионов (Са2+), гликопротеидов, белков, липидов; 3) окисление жирных кислот; 4) генетическая - синтез нуклеиновых кислот (идут процессы репликации и транскрипции). Митохондриальная ДНК обеспечивает цитоплазматическую наследственность. Аппарат Гольджи (комплекс Гольджи) — мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Комплекс Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году. Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединённых трубками стопок. Аппарат Гольджи асимметричен — цистерны, располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭР), на мембранах которого и происходит синтез белков рибосомами. Перемещение белков из эндоплазматической сети (ЭПС) в аппарат Гольджи происходит неизбирательно, однако не полностью или неправильно свернутые белки остаются при этом в ЭПС. Возвращение белков из аппарата Гольджи в ЭПС требует наличия специфической сигнальной последовательности (лизин-аспарагин-глутамин-лейцин) и происходит благодаря связыванию этих белков с мембранными рецепторами в цис-Гольджи. В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их модификации — гликозилирование и фосфорилирование. ФУНКЦИИ: 1) синтез полисахаридов 2) модификация и окончат созрев всех органич в-в. 3) синтез сложных молеку.(гликолипиды и гликопротеиды. 4) секреция с помощью пузырьков Гольджи. (выводят из клетки синтезир в-во). 5) обновление мембран. (когда секретор пузырёк встраивается в плазмолемму его содержимое вывод их клетки, а сам он становится частью мембраны). 6) участие в выделении растительной клетки. 7) сигрегация (разделение синтезированных в-в на 3 основных потока) это: -собств структура клетки (мембр белки); -секреторные белки; - ферменты лизосом. 8) формирование первичных лизосом. Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии. Эндоплазматический ретикулум (ЭПР) (лат. reticulum — сеточка) или эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвленную систему соединённых между собой каналов и полостей, ограниченных одинарной мембраной, поверхность которой составляет более 50% площади всех клеточных мембран. Мембрана ЭПС тоньше чем плазмалемма и содержит более высокую концентрации. белка. Непосредственным продолжение ЭПС является наружная ядерная мембрана. На поверхности мембран ЭПС происходит большая часть реакций метаболизма, протекающих в клетке. ЭПС разделяет цитоплазму на отдельные отсеки. по каналам ЭПС происходит упорядоченный обмен веществами и энергией между различными компонентами клетки. ЭПС – генератор мембран для плазмолеммы, ап гольджи и лизосом. Гранулярная или шероховатая эпс. наружная обращеная к цитоплазме, сторона грЭПС покрыта рибосомами (котор имеют вид мелк гранул; поступают из ядра благодаря связи мембраны с наруж мембр ядра). грЭПС – образ уплощенными мембранными цистернами и трубочками на наружной поверхности которых располог рибосомы и полисомы, придающие мембране зернист вид. Мембраны содерж белки (которые обеспеч связывание рибосом, уплощение цистерн). Полость грЭПС сообщ с перенуклеарн пространство. Благодаря грЭПС происход отделение вновь синтезированных белковых молекул от гиалоплазмы. грЭПС хорошо развита в клетках, специализирующихся на белковом синтезе. ФУНКЦИИ: 1)биосинтез всех мембранных белков, предназначенных для экспорта из клетки. 2) в грЭПС происход посттрансляционный процессинг белков. (созревание белка). белки приобрет характер для них третичную или четвертичную структуру. потом транспортир в комплекс гольджи - > потом в другие органойды. 3) гЭПС выполняет ф-ю пространственного разделения ферментных систем. резделени клетки с помощью мембран на отдел отсеки – компарменты. 4) обеспеч транспорт синтезируемых веществ в аппарат гольджи. Гладкая или агранулярная ЭПС. не имеет рибосом. Сост из сильно ветвящихся канальцев и мелких вакуолей диаметром 20-100 нм. гЭПС - трёхмерная замкнутая сеть мембранных анастамозирующих турбочек, канальцев, цистерн и пузырьков диаметром 20-100 нм, на поверхности которых рибосомы отсутсвт. На цитоплазмотической поверхности гЭПС синтезируется большая часть липидов клетки, которые вход в состав всех её мембран. Часть синтезир на гЭПС белков и липидов встраивается в неё, но увеличения общей площади мембраны при этом не происход. на гЭПС соверш синтез и распад многих углеводов, включ полисахариды, образ стеройдные гормоны. В Гэпс накаплив многие ядовит в-ва, подлежащ удален из клетки. гЭПС наиболее развита в клетках с интенсивным жировыми углеводным обменом. ФУНКЦИИ: 1) синтез липидов; (на мембранах) 2) синтез гликогена (в клетках печени) 3) синтез холестерина и других стеройдов 4) детоксикация эндогенных и экзогенных в-в. (в клетках печени) 5) накопление ионов Са. гЭПС в Миш клетках играет роль депо ионов кальция, необходимых для мыш сокращ. 6) компартментализация (эпс раздел клетку на отдел отсеки) 7) транспорт синтезируемых веществ 8) в мегакариоцитах элементы гЭПС образуют демаркационные каналы, разделяющие формирующие тромбоциты. 9) восстановление кариолеммы в телофазе митоза. Мембранные органоиды: |