Главная страница
Навигация по странице:

  • 2. Критерии и уровни организации живых организмов.

  • 3. Клеточная теория

  • 4. Современные представления об организации эукариотической клетки

  • 5. Современные представления об организации эукариотической клетки (Ядро)

  • 6. Современные представления об организации эукариотической клетки (2 х мембранные органеллы)

  • 7. Организация наследственного материала в клетке.

  • 8. Реализация биологической информации в клетке (транскрипция)

  • Экзамен по биологии. 1. Биология наука о закономерностях и механизмах жизнедеятельности. Биология наука о жизни, которая изучает закономерности жизни и развития живых существ. Термин биология


    Скачать 116.5 Kb.
    Название1. Биология наука о закономерностях и механизмах жизнедеятельности. Биология наука о жизни, которая изучает закономерности жизни и развития живых существ. Термин биология
    АнкорЭкзамен по биологии.doc
    Дата20.03.2018
    Размер116.5 Kb.
    Формат файлаdoc
    Имя файлаЭкзамен по биологии.doc
    ТипДокументы
    #16967
    КатегорияБиология. Ветеринария. Сельское хозяйство

    Раздел II

    1. Биология – наука о закономерностях и механизмах жизнедеятельности.

    Биология — наука о жизни, которая изучает закономерности жизни и развития живых существ. Термин «биология» был предложен немецким ботаником Г.Р. Тревиранусом и французским естествоиспытателем Ж.-Б. Ламарком в 1802 году независимо друг от друга.

    Биология относится к естественным наукам. Разделы науки биологии можно классифицировать по-разному. Например, в биологии выделяют науки по объектам исследования: о животных — зоологию; о растениях — ботанику; анатомию и физиологию человека как основу медицинской науки. В пределах каждой из этих наук имеются более узкие дисциплины. Например, в зоологии выделяют протозоологию, энтомологию, гельминтологию и другие.

    Основные методы биологии:

    1. Описательный – сбор и описание фактического материала.

    2. Сравнительный – позволяет путём сопоставления выделить сходства и различия между организмами. Является основой систематики.

    3. Исторический – связан с именем Дарвина (выявляет пути развития организмов).

    4. Экспериментальный – постановка опытов и изменение течения эксперимента в нужных опытах.


    2. Критерии и уровни организации живых организмов.

    К основным свойствам живого можно отнести:

    1. Химический состав. Живые существа состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

    2. Дискретность и целостность. Любая биологическая система (клетка, организм, вид и т.д.) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы, связанные структурно и функционально в единое целое).

    3. Структурная организация. Живые системы способны создавать порядок из хаотичного движения молекул, образуя определенные структуры. Для живого характерна упорядоченность в пространстве и времени. Это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в строго определенном порядке, направленном на поддержание постоянства внутренней среды — гомеостаза.

    4. Обмен веществ и энергии. Живые организмы — открытые системы, совершающие постоянный обмен веществом и энергией с окружающей средой. При изменении условий среды происходит саморегуляция жизненных процессов по принципу обратной связи, направленная на восстановление постоянства внутренней среды — гомеостаза. Например, продукты жизнедеятельности могут оказывать сильное и строго специфическое тормозящее воздействие на те ферменты, которые составили начальное звено в длинной цепи реакций.

    5. Самовоспроизведение. Самообновление. Время существования любой биологической системы ограничено. Для поддержания жизни происходит процесс самовоспроизведения, связанный с образованием новых молекул и структур, несущих генетическую информацию, находящуюся в молекулах ДНК.

    6. Наследственность. Молекула ДНК способна хранить, передавать наследственную информацию, благодаря матричному принципу репликации, обеспечивая материальную преемственность между поколениями.

    7. Изменчивость. При передаче наследственной информации иногда возникают различные отклонения, приводящие к изменению признаков и свойств у потомков. Если эти изменения благоприятствуют жизни, они могут закрепиться отбором.

    8. Рост и развитие. Организмы наследуют определенную генетическую информацию о возможности развития тех или иных признаков. Реализация информации происходит во время индивидуального развития — онтогенеза. На определенном этапе онтогенеза осуществляется рост организма, связанный с репродукцией молекул, клеток и других биологических структур. Рост сопровождается развитием.

    9. Раздражимость и движение. Все живое избирательно реагирует на внешние воздействия специфическими реакциями благодаря свойству раздражимости. Организмы отвечают на воздействие движением. Проявление формы движения зависит от структуры организма.

    Выделяют уровни организации всего живого:

    1. Молекулярно-генетический – это макромолекулы белков, полисахаридов, нуклеиновых кислот и гены. Явления уровня: пластический и энергетический обмен, передача наследственной информации.

    2. Субклеточный – органоиды клетки. Явления уровня: функционирование органоидов.

    3. Клеточный. Единица уровня – клетка. Явления: процессы жизнедеятельности.

    4. Тканевый. Единица уровня – группа клеток, выполняющая одинаковые функции – ткань. Явления уровня: специализация ткани к выполняемым функциям.

    5. Организменный. Единица уровня – особь в стадии онтогенеза. Явления уровня: те изменения, которые происходят с особью в процессе онтогенеза.

    6. Популяционно-видовой. Единица уровня – популяция. Явления уровня: элементарные эволюционные преобразования – микроэволюция.

    7. Биогеоценотический. Единица уровня – биогеоценоз. Явления уровня: круговороты веществ.

    8. Биосферный.


    3. Клеточная теория

    Клетка - основная структурная, функциональная и генетическая единица организации живого, элементарная живая система. Клетка может существовать как отдельный организм (бактерии, простейшие, некоторые водоросли и грибы) или в составе тканей многоклеточных животных, растений, грибов. Термин «клетка» был предложен английским исследователем Робертом Гуком в 1665 г. Впервые используя микроскоп для изучения срезов пробки, он заметил множество мелких образований, похожих на ячейки пчелиных сот. Роберт Гук дал им название ячейки или клетки. Работы Р. Гука вызвали интерес к дальнейшим микроскопическим исследованиям организмов. Возможности светового микроскопа в XVII-XVIII веках были ограничены. Накопление материала о клеточном строении растений и животных, о структуре самих клеток шло медленно. Только в тридцатых годах XIX века были сделаны фундаментальные обобщения о клеточной организации живого.

    Основные положения клеточной теории:

    1. Клетка – элементарная единица всего живого

    2. Все клетки разных организмов гомогенны по своему строению и свойствам.

    3. Клетка – единая система, включающая в себя множества взаимосвязанных элементов, представляющих собой целостное образование.

    4. Клетки увеличиваются в числе путём деления исходной клетки после удвоения её генетического материала (введено в 1959 году немецким патологоанатомом Рудольфом Вирховом: «Клетка от клетки»).

    5. Многоклеточный организм - это сложный ансамбль объединённых и интегрированных в системы органов и тканей, связанных друг с другом с помощью физических, гуморальных и нервных факторов.

    6. Клетки тотипотентны – то есть обладают одинаковым генетическим потенциалом и равноценны по генетической информации, но различны экспрессией (работой) генов, что приводит к морфологическому и функциональному разнообразию.

    Клетка – это ограниченная активной мембраной упорядоченная система биополимеров, участвующих в единой совокупности метаболических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.
    4. Современные представления об организации эукариотической клетки

    Основная часть поверхностного аппарата клетки - плазматическая мембрана. Согласно жидкостно-мозаичной модели, предложенной Николсоном и Сингером, в состав мембран входит бимолекулярный слой липидов, в который включены молекулы белков. Липиды — это водонерастворимые вещества, молекулы которых имеют два полюса, или два конца. Один конец молекулы обладает гидрофильными свойствами, его называют полярным. Другой полюс гидрофобный, или неполярный. В биологической мембране молекулы липидов двух параллельных слоев обращены друг к другу неполярными концами, а их полярные полюса остаются снаружи, образуя гидрофильные поверхности. Кроме липидов, в состав мембраны входят белки. Их можно разделить на три группы: периферические, погруженные (полуинтегральные) и пронизывающие (интегральные). Большинство белков мембраны является ферментами. Полуинтегральные белки образуют на мембране биохимический «конвейер», на котором в определенной последовательности осуществляется превращение веществ. Положение погруженных белков в мембране стабилизируется периферическими белками. Интегральные белки обеспечивают передачу информации в двух направлениях: через мембрану в сторону клетки и обратно. Интегральные белки бывают двух типов: переносчики и каналообразующие. Последние выстилают пору, заполненную водой. Через нее осуществляется прохождение ряда растворенных неорганических веществ с одной стороны мембраны на другую.

    Гиалоплазма (основная плазма, матрикс цитоплазмы или цитозоль) основное вещество цитоплазмы, заполняющее пространство между клеточными органеллами. Гиалоплазма содержит около 90% воды и различные белки, аминокислоты, нуклеотиды, жирные кислоты, ионы неорганических соединений, другие вещества. Крупные молекулы белка образуют коллоидный раствор, который может переходить из золя в гель. В гиалоплазме протекают ферментативные реакции, метаболические процессы, синтез аминокислот, жирных кислот. На рибосомах, свободно лежащих в цитоплазме, происходит синтез белков. Гиалоплазма содержит множество белковых филаментов, пронизывающих цитоплазму и образующих цитоскелет. В клетках животных организатором цитоскелета является область, расположенная рядом с ядром, содержащая пару центриолей. Цитоскелет определяет форму клеток, обеспечивает движение цитоплазмы.

    Эндоплазматическая сеть (ЭПС) - это система цистерн и каналов, «стенка» которых образована мембраной. ЭПС пронизывает цитоплазму в разных направлениях и делит ее на изолированные отсеки (компартменты). Благодаря этому в клетке осуществляются специфические биохимические реакции. Эндоплазматическая сеть выполняет также синтетическую и транспортную функции. Если на поверхности эндоплазматической мембраны есть рибосомы, ее называют шероховатой, если рибосом нет – гладкой. На рибосомах осуществляется синтез белков. Белки проходят через мембрану в цистерны ЭПС, где приобретают третичную структуру и транспортируются по каналам к месту потребления. На гладкой ЭПС происходит синтез липидов, стероидов. ЭПС — основное место биосинтеза и построения мембран цитоплазмы. Отчленяющиеся от нее пузырьки представляют исходный материал для других одномембранных органелл: аппарата Гольджи, лизосом, вакуолей.

    Аппарат Гольджи - органелла, обнаруженная в клетке итальянским исследователем Камилло Гольджи. Аппарат Гольджи обычно расположен около клеточного ядра. Основным элементом органеллы является мембрана, образующая уплощенные цистерны - диски. Они располагаются друг над другом (4-6). Края цистерн переходят в трубочки, от которых отчленяются пузырьки (пузырьки Гольджи), транспортирующие заключенное в них вещество к месту его потребления. Отчленение пузырьков Гольджи происходит на одном из полюсов аппарата. Со временем это приводит к исчезновению цистерны. На противоположном полюсе аппарата осуществляется сборка новых дисков-цистерн. Они формируются из пузырьков, отпочковывающихся от гладкой эндоплазматической сети. Содержимое этих пузырьков становится содержимым аппарата Гольджи, в котором подвергается дальнейшей переработке. Функции аппарата Гольджи разнообразны: секреторная, синтетическая, строительная, накопительная. Одна из важнейших функций - секреторная. В цистернах аппарата Гольджи происходит синтез сложных углеводов (полисахаридов), осуществляется их взаимосвязь с белками. С помощью пузырьков Гольджи готовые секреты выводятся за пределы клетки. Аппарат Гольджи образует гликопротеин (муцин), представляющий важную составную часть слизи. Иногда аппарат Гольджи принимает участие в транспорте липидов. В аппарате Гольджи происходит укрупнение белковых молекул. Он участвует в построении плазматической мембраны и мембран вакуолей. В нем формируются лизосомы.

    Лизосомы - пузырьки, заполненные гидролитическими ферментами (протеазами, нуклеазами, липазами). Лизосомы в клетках не представляют собой самостоятельных структур. Они образуются за счет активности эндоплазматической сети и аппарата Гольджи и напоминают секреторные вакуоли. Основная функция лизосом - внутриклеточное расщепление и переваривание веществ, поступивших в клетку или находящихся в ней, и удаление из клетки. Выделяют первичные и вторичные лизосомы (пищеварительные вакуоли, аутолизосомы, остаточные тельца). Первичные лизосомы представляют собой пузырьки, ограниченные от цитоплазмы одинарной мембраной. Ферменты, находящиеся в лизосомах, синтезируются на шероховатой эндоплазматической сети и транспортируются к аппарату Гольджи. В цистернах аппарата Гольджи вещества подвергаются дальнейшим превращениям. Пузырьки с набором ферментов, отделившиеся от цистерн аппарата Гольджи, называют первичными лизосомами. Они участвуют во внутриклеточном пищеварении. Первичные лизосомы могут сливаться с фагоцитарными и пиноцитарными вакуолями, образуя вторичные лизосомы. В них происходит переваривание веществ, поступивших в клетку путем эндоцитоза, усвоение их. Вторичные лизосомы— пищеварительные вакуоли, ферменты которых доставлены с помощью мелких первичных лизосом. Вторичные лизосомы могут выполнять защитную функцию. Вторичные лизосомы, содержащие нерасщепленный материал, называют остаточными тельцами или телолизосомами. Остаточные тельца обычно через плазматическую мембрану выводятся наружу (экзоцитоз). В аутолизосомах происходит разрушение отработанных органелл самой клетки (ЭПС, митохондрий, рибосом, гранул гликогена, включений и др.). Процесс уничтожения структур, ненужных клетке, называется аутофагией. В результате высвобождения содержимого лизосом в цитоплазму происходит саморазрушение клетки или аутолиз.
    5. Современные представления об организации эукариотической клетки (Ядро)

    Ядро было открыто и описано Р. Броуном. Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки. Ядро бывает шаровидной или овальной формы. В некоторых клетках встречаются сегментированные ядра. Размеры ядер - от 3 до 10 мкм в диаметре. Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК. Ядро имеет ядерную оболочку, отделяющую его от цитоплазмы, кариоплазму (ядерный сок), одно или несколько ядрышек, хроматин.

    Ядерная оболочка состоит из двух мембран. В ней имеются поры, играющие важную роль в переносе веществ в цитоплазму и из нее. Поры не являются постоянными образованиями. Их число меняется в зависимости от функциональной активности ядра. Ядерная оболочка связана непосредственно с эндоплазматической сетью. На наружной мембране ядерной оболочки, с внешней стороны находятся рибосомы, синтезирующие специфические белки, образующиеся только на рибосомах ядерной оболочки. Ядерный сок (кариоплазма) - внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок обеспечивает нормальное функционирование генетического материала. Ядрышки - обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез р–РНК, других видов РНК и образование субъединиц рибосом. Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены р–РНК. Хроматин (окрашенный материал) – плотное вещество ядра, хорошо окрашиваемое основными красителями. В состав хроматина входят молекулы ДНК в комплексе с белками (гистонами и негистонами), РНК. В неделящихся (интерфазных) ядрах хроматин может равномерно заполнять объем ядра, находясь в деконденсированном состоянии. Этот диффузный хроматин (эухроматин) генетически активен. Молекулы ДНК, содержащие наследственную информацию, способны удваиваться при репликации, и возможна передача (транскрипция) генетической информации с ДНК на и–РНК. Иногда в интерфазном ядре бывают видны глыбки хроматина, представляющие собой участки конденсированного хроматина (гетерохроматина). Это неактивные участки. Во время деления ядра хроматин окрашивается интенсивнее, происходит его конденсация – образование более спирализованных (скрученных) нитей, называемых хромосомами. Хромосомы синтетически неактивны. Строение хромосом лучше всего изучать в момент их наибольшей конденсации, т.е. в метафазе и начале анафазы митоза. Каждая хромосома в метафазе митоза состоит из двух хроматид, образовавшихся в результате редупликации, и соединенных центромерой (первичной перетяжкой). В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки нитей веретена. В анафазе хроматиды отделены друг от друга. Из них образуются дочерние хромосомы, содержащие одинаковую генетическую информацию. Центромера делит хромосому на два плеча. Хромосомы с равными плечами называют равноплечими или метацентрическими, с плечами неодинаковой длины - неравноплечими субметацентрическими, с одним коротким и вторым почти незаметным палочковидными или акроцентрическими. Некоторые хромосомы имеют вторичную перетяжку, отделяющую спутник. Вторичные перетяжки называют ядрышковыми организаторами. В них в интерфазе происходит образование ядрышка. В ядрышковых организаторах находится ДНК, отвечающая за синтез р-РНК. Плечи хромосом оканчиваются участками, называемыми теломерами, не способными соединяться с другими хромосомами.

    Число, размер и форма хромосом в наборе у разных видов могут варьировать. Совокупность признаков хромосомного набора называют кариотипом.

    Хромосомный набор специфичен и постоянен для особей каждого вида. У человека 46 хромосом, у мыши - 40 хромосом и т.д. В соматических клетках, имеющих диплоидный набор хромосом, хромосомы парные. Их называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского. В кариотипе различают половые хромосомы (у человека это Х–хромосома и Y–хромосома) и аутосомы (все остальные). Половые клетки имеют гаплоидный набор хромосом.
    6. Современные представления об организации эукариотической клетки (2хмембранные органеллы)

    Митохондрии имеются во всех эукариотических клетках. Основная функция митохондрии связана с окислением органических соединений и использованием энергии, освобождающейся при распаде этих соединений, для синтеза молекул АТФ. Число, размеры, форма митохондрии в клетке различны и непостоянны. Митохондрии могут иметь вытянутую, округлую, спиральную, палочковидную форму. В клетках, нуждающихся в большом количестве энергии, митохондрии много. Локализация митохондрии различна. Обычно они скапливаются вблизи тех участков цитоплазмы, где велика потребность в энергии АТФ. Каждая митохондрия окружена двумя мембранами. Наружная митохондриальная мембрана, отделяющая ее от гиалоплазмы, гладкая. Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана, ограничивающая матрикс митохондрии, образует многочисленные складки (кристы). Чем больше крист присутствует в митохондрии, тем интенсивнее протекают окислительно-восстановительные процессы.

    В матриксе митохондрии находятся различные ферменты, кольцевая молекула ДНК, рибосомы, РНК. На митохондриальных рибосомах синтезируются белки, специфические для органеллы. Митохондрии относят к полуавтономным органеллам. Наружная мембрана содержит ферменты, участвующие в синтезе митохондриальных липидов. Митохондрии называют энергетическими станциями клетки. В них происходит окисление органических веществ, благодаря чему освобождается заключенная в веществах энергия. Она необходима для осуществления всех жизненных процессов в клетке. Эта энергия используется на восстановительные процессы. В митохондриях осуществляется восстановление (синтез) АТФ из АДФ. В результате энергия, выделившаяся при разложении веществ, вновь переходит в связанную форму в молекуле АТФ. АТФ транспортируется ко всем участкам клетки, где необходима энергия. Эта энергия, заключенная в макроэргических связях в молекуле АТФ, выделяется при распаде АТФ до АДФ. АДФ снова поступает в митохондрии, где в ходе восстановительных реакций превращается в АТФ, связав энергию, освобожденную при окислении веществ. Окислительно-восстановительные процессы в митохондриях протекают ступенчато, при участии окислительных ферментов. Эти процессы обусловлены переходом энергии химических связей, заключенной в веществах, в макроэргическую связь в молекуле АТФ, которая синтезируется при использовании освобождающейся энергии из АДФ и фосфата.

    Пластиды – двумембранные органеллы, присутствующие в растительных клетках. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты. Хлоропласты – органеллы, осуществляющие фотосинтез, ограничены двумя мембранами – внешней и внутренней. Между мембранами есть межмембранное пространство. В хлоропластах присутствует зеленый пигмент – хлорофилл, находящийся в системе мембран, которые погружены во внутреннее содержимое пластид – матрикс (или строму). В строме хлоропластов находятся плоские мембранные структуры, называемые ламеллами. Ламеллы стромы лежат параллельно друг другу и связаны между собой. Две соседние мембраны, соединяясь концами, формируют замкнутые плоские мембранные структуры в форме диска – тилакоиды, – содержащие внутри жидкость. Тилакоиды, уложенные в стопки, образуют граны. В состав граны, кроме замкнутых дисков тилакоидов, входят участки ламелл. Ламеллы стромы связывают между собой отдельные граны хлоропласта. В мембранных структурах хлоропластов присутствуют пигменты: зеленые (хлорофиллы А и В), желто-оранжевые (ксантофилл и каротин) и др., ферменты, синтезирующие АТФ и переносчики электронов.

    Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны. Каждая рибосома состоит из двух частей: малой и большой субъединиц. В первую входят молекулы белка и одна молекула р–РНК, во вторую - белки и три молекулы р–РНК. Белок и р–РНК по массе в равных количествах участвуют в образовании рибосом. Р–РНК синтезируется в ядрышке. В синтезе белка, кроме рибосом, принимают участие м–РНК и т–РНК. М–РНК несет генетическую информацию о синтезе белка от ядра. Эта информация закодирована в последовательном расположении нуклеотидов в молекуле м–РНК. М–РНК присоединяется к поверхности малой субъединицы. Т–РНК доставляет из цитоплазмы к рибосоме необходимые аминокислоты, из которых строится полипептидная цепь. В растущей полипептидной цепи каждая аминокислота занимает соответствующее место, что определяет качество синтезируемого белка. В процессе синтеза белка рибосома перемещается вдоль м–РНК.

    В синтезе одной полипептидной цепочки участвуют много рибосом, соединенных последовательно друг с другом м–РНК. Такой комплекс из рибосом называют полирибосомой. Рибосомы удерживают в нужном положении аминокислоты, м–РНК, т–РНК до тех пор, пока между соседними аминокислотами не образуется пептидная связь.

    Рибосомы могут свободно находиться в цитоплазме или быть связанными с эндоплазматической сетью, входя в состав шероховатой ЭПС.

    Белки, образовавшиеся на рибосомах, соединенных с мембраной ЭПС, обычно поступают в цистерны ЭПС. Белки, синтезируемые на свободных рибосомах, остаются в гиалоплазме.

    К немембранным органеллам относят микротрубочки и микрофиламенты. Микротрубочки – тончайшие трубочки диаметром 24 нм, стенки которых образованы белком тубулином. Глобулярные субъединицы этого белка располагаются по спирали. Микротрубочки определяют направление перемещения внутриклеточных компонентов, в том числе расхождение хромосом к полюсам клетки при делении ядра. Они участвуют в образовании «цитоскелета». Микрофиламенты – тонкие белковые нити диаметром 6 нм, состоят из белка актина, близкого тому, который содержится в мышцах. Эти нити, как и микротрубочки, являются элементами «цитоскелета». Они образуют кортикальный слой под плазматической мембраной. Кроме микротрубочек, присутствующих в цитоплазме, в клетке имеются микротрубочки, формирующие центриоли клеточного центра, базальные тельца, реснички и жгутики.

    В цитоплазме клеток присутствуют включения - непостоянные компоненты, выполняющие функцию запаса питательных веществ (капли жира, глыбки гликогена), различных секретов, подготовленных к выведению из клетки. К включениям относят некоторые пигменты (гемоглобин, липофуцин) и другие. Включения синтезируются в клетке и используются в процессе обмена.
    7. Организация наследственного материала в клетке.

    В 1928 году Гриффит изучал безкапсульные неверулентные (т.е. не вызывающие заболевания) пневмококки и верулентные в полисахаридной капсуле, вызывающие воспаление лёгких. Опыты проводились для создания вакцины.

    При инъекции мышам живых безкапсульных бактерий они выживали. А при введении живых капсульных – умирали.

    При введении убитых при нагревании и живых безкапсульных пневмококков мыши погибали, а из них выделяли живых капсульных бактерий.

    Таким образом, способность образовывать капсулу перешла от одних бактерий к другим. Фактором, превращающим некапсульные пневмококки в патогенные, является ДНК, а само явление называется трансформацией.

    Химическая природа ДНК была установлена Эвери, Макмедом, Маккарти в 1944 году.

    Впервые ДНК из гноя выделил биохимическим методом швейцарский учёный Ф. Мишер в 1869 году.

    ДНК – это полимер, мономером которого является нуклеотид. Нуклеотид состоит из азотистого основания (пуринового А, Г или пиримидинового Т, Ц), дизоксирибозы и остатка фосфорной кислоты.

    Эдвин Чаргаф обнаружил, что количественное содержание гуанина равно содержанию цитозина, а содержание аденина равно содержанию тимина, и сформулировал правило Чаргафа:



    Основную структуру ДНК установили Уотсон и Крик:

    ДНК – это двойная спираль, 10 пар оснований составляет полный оборот (3600). Основание находится внутри спирали, а их фосфатная группа находится снаружи. Таким образом, первичная структура ДНК представляет собой цепочку нуклеотидов, в которой они связанны фосфодиэфирными связями.

    Вторичная структура ДНК – представлена двойной цепочкой, в которой азотистые основания связанны водородными связями. Между А и Т двойная связь, а между Г и Ц – тройная.

    Третичная структура ДНК – это лево- или правозакрученная спираль.

    Репликация.

    Основное свойство ДНК – способность к репликации.

    Значение репликации – обеспечение потомков полной и точной генетической информацией. Этот процесс был изучен в лаборатории А. Корнберга.

    Репликация основывается на 3х принципах:

    1. Комплиментарность – азотистые основания своей пространственной структурой должны дополнять друг друга.

    2. Полуконсервативность – каждая молекула состоит из 1 цепи исходной родительской информации, а вторую синтезирует заново.

    3. Антиполярность.

    Для того, чтобы начался процесс репликации суперспирализованная ДНК должна быть релаксированна и цепи выпрямлены. Участок расхождения цепи ДНК называют репликативной вилкой. Ферментативный комплекс, осуществляющий репликацию может работать только в одном направлении – от 5’ к 3’ концу. Поэтому только одна из новых цепей будет ситезироваться непрерывно и называется лидирующей. Вторая цепь будет синтезироваться в виде фрагментов – фрагменты Оказаки, которые затем сшиваются в единую цепь. Синтез таких фрагментов идёт на фрагменте РНК (РНК-затравка или праймер), который в последствии удаляется.

    Единицей репликации является репликон.

    Ферментативный комплекс, участвующий в репликации ДНК:

    1. ДНК-геликаза – расплетает двойную спираль.

    2. Белки-дестабилизаторы – расплетают участки ДНК, делая её доступной для других ферментов.

    3. ДНК-топоизомераза – разрывает фосфодиэфирные связи.

    4. РНК-проймаза – синтезирует РНК-затравку.

    5. ДНК-полимераза – основной элемент репликации. Синтезирует лидирующую цепь и фрагменты Оказаки.

    6. ДНК-липаза – сшивает фрагменты Оказаки в единую цепь.

    Репликация у прокариот и эукариот протекает не одинарно. У прокариот имеется одна кольцевая ДНК и она имеет только 1ну точку начала репликации, она же является точкой её окончания. Таким образом репликативная вилка проходит последовательно всю ДНК и функционирует как единственный репликон.

    Высокая точность обеспечивается специальными механизмами, которые осуществляют коррекцию.

    Механизмы коррекции:

    1. Механизм самокоррекции – осуществляется ДНК-полимеразой. Самокоррекция заключается в отщеплении ошибочно включённого в цепь ДНК нуклеотида, не спаренного с матрицей. Следствием самокоррекции снижается механизм ошибок в 10 раз.

    2. Эксцизионная (дореплекативная) репарация – осуществляется специфическими ферментами. Искажение последовательностей нуклеотидов в одной из цепей обнаруживается ими, затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплиментарной цепи ДНК.

    3. Пострепликативная репарация – осуществляется путём рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралями ДНК. Пример: возникновение тиминовых димеров, когда они не устраняются самопроизвольно под действием видимого света (световая репарация) или в ходе дорепликативной эксцизионной репарации. Ковалентные связи, возникающие между рядом стоящими остатками тимина делают их не способными к связыванию с комплиментарными нуклеотидами. В результате во вновь синтезируемой цепи возникают бреши (разрывы), узнаваемые ферментами репарации. Восстановление целостности новой полинуклеотидной цепи одной из дочерних ДНК осуществляется благодаря рекомбинации с соответствующей ей нормальной материнской цепью другой дочерней ДНК. Образовавшийся в материнской цепи пробел заполняется путём синтеза на комплиментарной ей полинуклеотидной цепи.

    Если в наследственном материале слишком много повреждения и часть из них не ликвидируется, включается система индуцируемых (побуждаемых) ферментов репарации (SOS-система). Эти ферменты заполняют бреши, восстанавливая целостность синтезируемых полинуклеотидных цепей без точного соблюдения принципа комплиментарности. Поэтому иногда сами процессы репарации могут служить источником стойких изменений в структуре ДНК (мутаций).

    У прокариот большая часть генома представлена кодирующими последовательностями генотипа, которые несут геномную информацию.

    У большинства высших эукариот в организации материала наблюдается избыточность ДНК. Их геном представлен:

    • Часто повторяющиеся последовательности – представлены в гаплоидном наборе 106 и более копиями. Эти последовательности не участвуют в синтезе РНК и называются сателитными.

    • Умеренно-повторяющиеся последовательности – представлены 102-105 копиями. В них входят гены, кодирующие структуру гистоновых белков тРНК и рРНК.

    • Уникальные последовательности – существуют в единственном числе или в 2-3х копиях. К ним относятся все гены, кодирующие структуры основных белков. С них копируются всё мРНК.


    8. Реализация биологической информации в клетке (транскрипция)

    Всю последовательность процессов, происходящих при синтезе белковых молекул, можно объединить в 3 этапа:

    1. Транскрипция

    2. Процессинг

    3. Трансляция

    Структурными единицами наследственной информации являются гены участки молекулы ДНК, кодирующие синтез определенного белка.

    1. Транскрипция – процесс синтеза молекулы и–РНК на молекуле ДНК, выступающей в роли матрицы. Молекула ДНК на участке гена раскручивается, и списывание информации происходит с одной из двух нитей молекулы ДНК, называемой кодогенной. Сборку молекулы и–РНК по принципу комплементарности осуществляет фермент – РНК–полимераза. Списывание происходит только с части молекулы ДНК, называемой геном. Некоторые участки и–РНК не несут информацию о будущей молекуле белка. Их присутствие связано с особенностями строения генов и механизма транскрипции. Эти участки молекулы и–РНК, называемые интронами, необходимо удалить.

    2. Процессинг – процесс созревания молекулы информационной РНК, сопровождающийся удалением интронов и сращиванием (сплайсингом) остающихся фрагментов (экзонов, т.е. кодирующих последовательностей). Эту РНК называют матричной (м–РНК).

    3. Трансляция – синтез полипептидных цепей белков по матрице м–РНК на рибосомах.

    Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью специальных тРНК. Молекулы т–РНК, состоящие из 85–100 нуклеотидов, способны сворачиваться таким образом, что напоминают по форме лист клевера. В клетке присутствует около 40 молекул т–РНК. На вершине «листа» т–РНК имеется триплет, называемый антикодоном. Он комплементарен нуклеотидам кодона м–РНК. К основанию молекулы т–РНК присоединяется соответствующая аминокислота, та, которую кодирует триплет, комплементарный антикодону. Этот процесс осуществляется с помощью фермента – кодазы, с затратой энергии, получаемой при расщеплении молекулы АТФ. Трансляция состоит из трех последовательных фаз – инициации, элонгации и терминации.

      1. Инициация. На этом этапе происходит сборка всего комплекса, участвующего в синтезе молекулы белка. Происходит при присоединение ферментативного комплекса РНК-полимеразы к промотору.

      2. Элонгация. В молекуле любой мРНК есть участок, комплементарный рРНК – малой субъединицы рибосомы и специфически ею управляемый. Рядом с ним находится инициирующий стартовый код он АУТ, кодирующий аминокислоту метионин. На рибосоме имеются два участка для связывания двух молекул тРНК. В одном участке, называемым пептидильным, уже находится первая тРНК. Это всегда одна и та же тРНК, несущая аминокислоту метионин (I). С него начинается синтез любой молекулы белка. Во второй участок рибосомы — аминоацильный поступает вторая молекула т–РНК и присоединяется к своему кодону (II). Между метионином и второй аминокислотой образуется пептидная связь. Вторая тРНК перемещается вместе со своим кодоном мРНК в пептидильный центр. Перемещение тРНК с полипептидной цепочкой из аминоацильного участка в пептидильный сопровождается продвижением рибосомы по м–РНК на шаг, соответствующий одному кодону. Этот этап требует затраты энергии. тРНК, доставившая метионин, возвращается в цитоплазму. Аминоацильный центр освобождается. В него поступает новая тРНК, связанная с аминокислотой, зашифрованной очередным кодоном (III). Между третьей и второй аминокислотами образуется пептидная связь, и третья тРНК вместе с кодоном м—РНК вновь перемещается в пептидильный центр. Таким образом, в растущей белковой молекуле аминокислоты оказываются соединенными в той последовательности, в которой расположены шифрующие их кодоны в мРНК. Процесс элонгации, удлинения белковой цепи, продолжается до тех пор, пока в рибосому не попадет один из трех кодонов, не кодирующих аминокислоты. Это триплеты терминации: УАА, УГА, УАГ. Ни одна из тРНК не может занять место в аминоацильном центре.

      3. Терминация – прекращение роста цепи. Происходит на специальных участках – терминаторах, так как гены прокариот состоят из кодирующих последовательностей, несущих генетическую информацию, первичные транскрипты мРНК могут сразу выполнять роль матрицы при трансляции. У эукариот транскрипция и трансляция разделены по времени и топографии.

    Гены эукариот содержат некодирующие последовательности – интроны. Поэтому первичный транскрипт имеет большие размеры, чем необходимо для трансляции и называется гетерогенной ядерной РНК.

    Она является точной копией транскрибированного участка ДНК. Эта молекула в дальнейшем подвергается процесингу (формированию зрелых мРНК), в ходе которой происходит сплайсинг (вырезание интронов и сшивание экзонов). В результате формируется мРНК, состоящая только из кодирующих последовательностей.

    Ферментативный комплекс РНК-полимеразы, принимающий участие в транскрипции:

    1. РНК-полимераза-1. Отвечает за транскрипцию генов рРНК.

    2. РНК-полимераза-2. Отвечает за транскрипцию гетерогенной ядерной РНК.

    3. РНК-полимераза-3. Отвечает за синтез рРНК и тРНК.

    4. РНК-полимераза митохондрий (и пластид).


    написать администратору сайта